mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
clang-format and clang-tidy fixes for e89e4c8c
This commit is contained in:
parent
c88a858ea2
commit
af702116fd
@ -1,61 +1,58 @@
|
||||
/******************************************************************************
|
||||
* @file
|
||||
* @brief Implementation of the [Convex Hull](https://en.wikipedia.org/wiki/Convex_hull)
|
||||
* implementation using [Graham Scan](https://en.wikipedia.org/wiki/Graham_scan)
|
||||
* @details
|
||||
* In geometry, the convex hull or convex envelope or convex closure of a shape
|
||||
* is the smallest convex set that contains it. The convex hull may be defined
|
||||
* either as the intersection of all convex sets containing a given subset of a
|
||||
* Euclidean space, or equivalently as the set of all convex combinations of
|
||||
* points in the subset. For a bounded subset of the plane, the convex hull may
|
||||
* be visualized as the shape enclosed by a rubber band stretched around the subset.
|
||||
*
|
||||
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using Graham’s
|
||||
* scan algorithm, we can find Convex Hull in O(nLogn) time.
|
||||
*
|
||||
* ### Implementation
|
||||
*
|
||||
* Sort points
|
||||
* We first find the bottom-most point. The idea is to pre-process
|
||||
* points be sorting them with respect to the bottom-most point. Once the points
|
||||
* are sorted, they form a simple closed path.
|
||||
* The sorting criteria is to use the orientation to compare angles without actually
|
||||
* computing them (See the compare() function below) because computation of actual
|
||||
* angles would be inefficient since trigonometric functions are not simple to evaluate.
|
||||
*
|
||||
* Accept or Reject Points
|
||||
* Once we have the closed path, the next step is to traverse the path and
|
||||
* remove concave points on this path using orientation. The first two points in
|
||||
* sorted array are always part of Convex Hull. For remaining points, we keep track
|
||||
* of recent three points, and find the angle formed by them. Let the three points
|
||||
* be prev(p), curr(c) and next(n). If orientation of these points (considering them
|
||||
* in same order) is not counterclockwise, we discard c, otherwise we keep it.
|
||||
*
|
||||
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
||||
*
|
||||
*******************************************************************************/
|
||||
#include <iostream> /// for IO Operations
|
||||
#include <cassert> /// for std::assert
|
||||
#include <vector> /// for std::vector
|
||||
#include "./graham_scan_functions.hpp" /// for all the functions used
|
||||
* @file
|
||||
* @brief Implementation of the [Convex
|
||||
*Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
|
||||
*Scan](https://en.wikipedia.org/wiki/Graham_scan)
|
||||
* @details
|
||||
* In geometry, the convex hull or convex envelope or convex closure of a shape
|
||||
* is the smallest convex set that contains it. The convex hull may be defined
|
||||
* either as the intersection of all convex sets containing a given subset of a
|
||||
* Euclidean space, or equivalently as the set of all convex combinations of
|
||||
* points in the subset. For a bounded subset of the plane, the convex hull may
|
||||
* be visualized as the shape enclosed by a rubber band stretched around the
|
||||
*subset.
|
||||
*
|
||||
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using
|
||||
*Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time.
|
||||
*
|
||||
* ### Implementation
|
||||
*
|
||||
* Sort points
|
||||
* We first find the bottom-most point. The idea is to pre-process
|
||||
* points be sorting them with respect to the bottom-most point. Once the points
|
||||
* are sorted, they form a simple closed path.
|
||||
* The sorting criteria is to use the orientation to compare angles without
|
||||
*actually computing them (See the compare() function below) because computation
|
||||
*of actual angles would be inefficient since trigonometric functions are not
|
||||
*simple to evaluate.
|
||||
*
|
||||
* Accept or Reject Points
|
||||
* Once we have the closed path, the next step is to traverse the path and
|
||||
* remove concave points on this path using orientation. The first two points in
|
||||
* sorted array are always part of Convex Hull. For remaining points, we keep
|
||||
*track of recent three points, and find the angle formed by them. Let the three
|
||||
*points be prev(p), curr(c) and next(n). If orientation of these points
|
||||
*(considering them in same order) is not counterclockwise, we discard c,
|
||||
*otherwise we keep it.
|
||||
*
|
||||
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
||||
*
|
||||
*******************************************************************************/
|
||||
#include <cassert> /// for std::assert
|
||||
#include <iostream> /// for IO Operations
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
#include "./graham_scan_functions.hpp" /// for all the functions used
|
||||
|
||||
/*******************************************************************************
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*******************************************************************************/
|
||||
static void test() {
|
||||
std::vector<geometry::grahamscan::Point> points = {{0, 3},
|
||||
{1, 1},
|
||||
{2, 2},
|
||||
{4, 4},
|
||||
{0, 0},
|
||||
{1, 2},
|
||||
{3, 1},
|
||||
{3, 3}};
|
||||
std::vector<geometry::grahamscan::Point> expected_result = {{0, 3},
|
||||
{4, 4},
|
||||
{3, 1},
|
||||
{0, 0}};
|
||||
std::vector<geometry::grahamscan::Point> points = {
|
||||
{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};
|
||||
std::vector<geometry::grahamscan::Point> expected_result = {
|
||||
{0, 3}, {4, 4}, {3, 1}, {0, 0}};
|
||||
std::vector<geometry::grahamscan::Point> derived_result;
|
||||
std::vector<geometry::grahamscan::Point> res;
|
||||
|
||||
|
@ -1,44 +1,48 @@
|
||||
/******************************************************************************
|
||||
* @file
|
||||
* @brief Implementation of the [Convex Hull](https://en.wikipedia.org/wiki/Convex_hull)
|
||||
* implementation using [Graham Scan](https://en.wikipedia.org/wiki/Graham_scan)
|
||||
* @details
|
||||
* In geometry, the convex hull or convex envelope or convex closure of a shape
|
||||
* is the smallest convex set that contains it. The convex hull may be defined
|
||||
* either as the intersection of all convex sets containing a given subset of a
|
||||
* Euclidean space, or equivalently as the set of all convex combinations of
|
||||
* points in the subset. For a bounded subset of the plane, the convex hull may
|
||||
* be visualized as the shape enclosed by a rubber band stretched around the subset.
|
||||
*
|
||||
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using Graham’s
|
||||
* scan algorithm, we can find Convex Hull in O(nLogn) time.
|
||||
*
|
||||
* ### Implementation
|
||||
*
|
||||
* Sort points
|
||||
* We first find the bottom-most point. The idea is to pre-process
|
||||
* points be sorting them with respect to the bottom-most point. Once the points
|
||||
* are sorted, they form a simple closed path.
|
||||
* The sorting criteria is to use the orientation to compare angles without actually
|
||||
* computing them (See the compare() function below) because computation of actual
|
||||
* angles would be inefficient since trigonometric functions are not simple to evaluate.
|
||||
*
|
||||
* Accept or Reject Points
|
||||
* Once we have the closed path, the next step is to traverse the path and
|
||||
* remove concave points on this path using orientation. The first two points in
|
||||
* sorted array are always part of Convex Hull. For remaining points, we keep track
|
||||
* of recent three points, and find the angle formed by them. Let the three points
|
||||
* be prev(p), curr(c) and next(n). If orientation of these points (considering them
|
||||
* in same order) is not counterclockwise, we discard c, otherwise we keep it.
|
||||
*
|
||||
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
||||
*
|
||||
*******************************************************************************/
|
||||
#include <iostream> /// for IO operations
|
||||
#include <stack> /// for std::stack
|
||||
#include <vector> /// for std::vector
|
||||
#include <algorithm> /// for std::swap
|
||||
#include <cstdlib> /// for mathematics and datatype conversion
|
||||
* @file
|
||||
* @brief Implementation of the [Convex
|
||||
*Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
|
||||
*Scan](https://en.wikipedia.org/wiki/Graham_scan)
|
||||
* @details
|
||||
* In geometry, the convex hull or convex envelope or convex closure of a shape
|
||||
* is the smallest convex set that contains it. The convex hull may be defined
|
||||
* either as the intersection of all convex sets containing a given subset of a
|
||||
* Euclidean space, or equivalently as the set of all convex combinations of
|
||||
* points in the subset. For a bounded subset of the plane, the convex hull may
|
||||
* be visualized as the shape enclosed by a rubber band stretched around the
|
||||
*subset.
|
||||
*
|
||||
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using
|
||||
*Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time.
|
||||
*
|
||||
* ### Implementation
|
||||
*
|
||||
* Sort points
|
||||
* We first find the bottom-most point. The idea is to pre-process
|
||||
* points be sorting them with respect to the bottom-most point. Once the points
|
||||
* are sorted, they form a simple closed path.
|
||||
* The sorting criteria is to use the orientation to compare angles without
|
||||
*actually computing them (See the compare() function below) because computation
|
||||
*of actual angles would be inefficient since trigonometric functions are not
|
||||
*simple to evaluate.
|
||||
*
|
||||
* Accept or Reject Points
|
||||
* Once we have the closed path, the next step is to traverse the path and
|
||||
* remove concave points on this path using orientation. The first two points in
|
||||
* sorted array are always part of Convex Hull. For remaining points, we keep
|
||||
*track of recent three points, and find the angle formed by them. Let the three
|
||||
*points be prev(p), curr(c) and next(n). If orientation of these points
|
||||
*(considering them in same order) is not counterclockwise, we discard c,
|
||||
*otherwise we keep it.
|
||||
*
|
||||
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
||||
*
|
||||
*******************************************************************************/
|
||||
#include <algorithm> /// for std::swap
|
||||
#include <cstdlib> /// for mathematics and datatype conversion
|
||||
#include <iostream> /// for IO operations
|
||||
#include <stack> /// for std::stack
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/******************************************************************************
|
||||
* @namespace geometry::grahamscan
|
||||
@ -46,148 +50,150 @@
|
||||
*******************************************************************************/
|
||||
namespace geometry::grahamscan {
|
||||
|
||||
/******************************************************************************
|
||||
* @struct Point
|
||||
* @brief for X and Y co-ordinates of the co-ordinate.
|
||||
*******************************************************************************/
|
||||
struct Point {
|
||||
int x, y;
|
||||
};
|
||||
/******************************************************************************
|
||||
* @struct Point
|
||||
* @brief for X and Y co-ordinates of the co-ordinate.
|
||||
*******************************************************************************/
|
||||
struct Point {
|
||||
int x, y;
|
||||
};
|
||||
|
||||
// A global point needed for sorting points with reference
|
||||
// to the first point Used in compare function of qsort()
|
||||
Point p0;
|
||||
// A global point needed for sorting points with reference
|
||||
// to the first point Used in compare function of qsort()
|
||||
Point p0;
|
||||
|
||||
/******************************************************************************
|
||||
* @brief A utility function to find next to top in a stack.
|
||||
* @param S Stack to be used for the process.
|
||||
* @returns @param Point Co-ordinates of the Point <int, int>
|
||||
*******************************************************************************/
|
||||
Point nextToTop(std::stack<Point> S) {
|
||||
Point p = S.top();
|
||||
S.pop();
|
||||
Point res = S.top();
|
||||
S.push(p);
|
||||
return res;
|
||||
/******************************************************************************
|
||||
* @brief A utility function to find next to top in a stack.
|
||||
* @param S Stack to be used for the process.
|
||||
* @returns @param Point Co-ordinates of the Point <int, int>
|
||||
*******************************************************************************/
|
||||
Point nextToTop(std::stack<Point> S) {
|
||||
Point p = S.top();
|
||||
S.pop();
|
||||
Point res = S.top();
|
||||
S.push(p);
|
||||
return res;
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief A utility function to return square of distance between p1 and p2.
|
||||
* @param p1 Co-ordinates of Point 1 <int, int>.
|
||||
* @param p2 Co-ordinates of Point 2 <int, int>.
|
||||
* @returns @param int distance between p1 and p2.
|
||||
*******************************************************************************/
|
||||
int distSq(Point p1, Point p2) {
|
||||
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief To find orientation of ordered triplet (p, q, r).
|
||||
* @param p Co-ordinates of Point p <int, int>.
|
||||
* @param q Co-ordinates of Point q <int, int>.
|
||||
* @param r Co-ordinates of Point r <int, int>.
|
||||
* @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise,
|
||||
* 2 --> Counterclockwise
|
||||
*******************************************************************************/
|
||||
int orientation(Point p, Point q, Point r) {
|
||||
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
||||
|
||||
if (val == 0)
|
||||
return 0; // collinear
|
||||
return (val > 0) ? 1 : 2; // clock or counter-clock wise
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief A function used by library function qsort() to sort an array of
|
||||
* points with respect to the first point
|
||||
* @param vp1 Co-ordinates of Point 1 <int, int>.
|
||||
* @param vp2 Co-ordinates of Point 2 <int, int>.
|
||||
* @returns @param int distance between p1 and p2.
|
||||
*******************************************************************************/
|
||||
int compare(const void *vp1, const void *vp2) {
|
||||
auto *p1 = static_cast<const Point *>(vp1);
|
||||
auto *p2 = static_cast<const Point *>(vp2);
|
||||
|
||||
// Find orientation
|
||||
int o = orientation(p0, *p1, *p2);
|
||||
if (o == 0) {
|
||||
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief A utility function to return square of distance between p1 and p2.
|
||||
* @param p1 Co-ordinates of Point 1 <int, int>.
|
||||
* @param p2 Co-ordinates of Point 2 <int, int>.
|
||||
* @returns @param int distance between p1 and p2.
|
||||
*******************************************************************************/
|
||||
int distSq(Point p1, Point p2) {
|
||||
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
|
||||
return (o == 2) ? -1 : 1;
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief Prints convex hull of a set of n points.
|
||||
* @param points vector of Point<int, int> with co-ordinates.
|
||||
* @param size Size of the vector.
|
||||
* @returns @param vector vector of Conver Hull.
|
||||
*******************************************************************************/
|
||||
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
|
||||
// Find the bottom-most point
|
||||
int ymin = points[0].y, min = 0;
|
||||
for (int i = 1; i < size; i++) {
|
||||
int y = points[i].y;
|
||||
|
||||
// Pick the bottom-most or chose the left-most point in case of tie
|
||||
if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) {
|
||||
ymin = points[i].y, min = i;
|
||||
}
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief To find orientation of ordered triplet (p, q, r).
|
||||
* @param p Co-ordinates of Point p <int, int>.
|
||||
* @param q Co-ordinates of Point q <int, int>.
|
||||
* @param r Co-ordinates of Point r <int, int>.
|
||||
* @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise,
|
||||
* 2 --> Counterclockwise
|
||||
*******************************************************************************/
|
||||
int orientation(Point p, Point q, Point r) {
|
||||
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
||||
// Place the bottom-most point at first position
|
||||
std::swap(points[0], points[min]);
|
||||
|
||||
if (val == 0) return 0; // collinear
|
||||
return (val > 0) ? 1 : 2; // clock or counter-clock wise
|
||||
// Sort n-1 points with respect to the first point. A point p1 comes
|
||||
// before p2 in sorted output if p2 has larger polar angle
|
||||
// (in counterclockwise direction) than p1.
|
||||
p0 = points[0];
|
||||
qsort(&points[1], size - 1, sizeof(Point), compare);
|
||||
|
||||
// If two or more points make same angle with p0, Remove all but the one
|
||||
// that is farthest from p0 Remember that, in above sorting, our criteria
|
||||
// was to keep the farthest point at the end when more than one points have
|
||||
// same angle.
|
||||
int m = 1; // Initialize size of modified array
|
||||
for (int i = 1; i < size; i++) {
|
||||
// Keep removing i while angle of i and i+1 is same with respect to p0
|
||||
while (i < size - 1 && orientation(p0, points[i], points[i + 1]) == 0) {
|
||||
i++;
|
||||
}
|
||||
|
||||
points[m] = points[i];
|
||||
m++; // Update size of modified array
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief A function used by library function qsort() to sort an array of
|
||||
* points with respect to the first point
|
||||
* @param vp1 Co-ordinates of Point 1 <int, int>.
|
||||
* @param vp2 Co-ordinates of Point 2 <int, int>.
|
||||
* @returns @param int distance between p1 and p2.
|
||||
*******************************************************************************/
|
||||
int compare(const void *vp1, const void *vp2) {
|
||||
auto *p1 = static_cast<const Point *>(vp1);
|
||||
auto *p2 = static_cast<const Point *>(vp2);
|
||||
// If modified array of points has less than 3 points, convex hull is not
|
||||
// possible
|
||||
if (m < 3)
|
||||
return {};
|
||||
|
||||
// Find orientation
|
||||
int o = orientation(p0, *p1, *p2);
|
||||
if (o == 0) {
|
||||
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
|
||||
}
|
||||
// Create an empty stack and push first three points to it.
|
||||
std::stack<Point> S;
|
||||
S.push(points[0]);
|
||||
S.push(points[1]);
|
||||
S.push(points[2]);
|
||||
|
||||
return (o == 2) ? -1 : 1;
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* @brief Prints convex hull of a set of n points.
|
||||
* @param points vector of Point<int, int> with co-ordinates.
|
||||
* @param size Size of the vector.
|
||||
* @returns @param vector vector of Conver Hull.
|
||||
*******************************************************************************/
|
||||
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
|
||||
|
||||
// Find the bottom-most point
|
||||
int ymin = points[0].y, min = 0;
|
||||
for (int i = 1; i < size; i++) {
|
||||
int y = points[i].y;
|
||||
|
||||
// Pick the bottom-most or chose the left-most point in case of tie
|
||||
if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) {
|
||||
ymin = points[i].y, min = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Place the bottom-most point at first position
|
||||
std::swap(points[0], points[min]);
|
||||
|
||||
// Sort n-1 points with respect to the first point. A point p1 comes
|
||||
// before p2 in sorted output if p2 has larger polar angle
|
||||
// (in counterclockwise direction) than p1.
|
||||
p0 = points[0];
|
||||
qsort(&points[1], size - 1, sizeof(Point), compare);
|
||||
|
||||
// If two or more points make same angle with p0, Remove all but the one
|
||||
// that is farthest from p0 Remember that, in above sorting, our criteria
|
||||
// was to keep the farthest point at the end when more than one points have
|
||||
// same angle.
|
||||
int m = 1; // Initialize size of modified array
|
||||
for (int i = 1; i < size; i++) {
|
||||
// Keep removing i while angle of i and i+1 is same with respect to p0
|
||||
while (i < size - 1 &&
|
||||
orientation(p0, points[i], points[i + 1]) == 0) {
|
||||
i++;
|
||||
}
|
||||
|
||||
points[m] = points[i];
|
||||
m++; // Update size of modified array
|
||||
}
|
||||
|
||||
// If modified array of points has less than 3 points, convex hull is not possible
|
||||
if (m < 3) return {};
|
||||
|
||||
// Create an empty stack and push first three points to it.
|
||||
std::stack <Point> S;
|
||||
S.push(points[0]);
|
||||
S.push(points[1]);
|
||||
S.push(points[2]);
|
||||
|
||||
// Process remaining n-3 points
|
||||
for (int i = 3; i < m; i++) {
|
||||
// Keep removing top while the angle formed by
|
||||
// points next-to-top, top, and points[i] makes
|
||||
// a non-left turn
|
||||
while (S.size() > 1 && orientation(nextToTop(S), S.top(), points[i]) != 2) {
|
||||
S.pop();
|
||||
}
|
||||
S.push(points[i]);
|
||||
}
|
||||
|
||||
std::vector<Point> result;
|
||||
// Now stack has the output points, push them into the resultant vector
|
||||
while (!S.empty()) {
|
||||
Point p = S.top();
|
||||
result.push_back(p);
|
||||
// Process remaining n-3 points
|
||||
for (int i = 3; i < m; i++) {
|
||||
// Keep removing top while the angle formed by
|
||||
// points next-to-top, top, and points[i] makes
|
||||
// a non-left turn
|
||||
while (S.size() > 1 &&
|
||||
orientation(nextToTop(S), S.top(), points[i]) != 2) {
|
||||
S.pop();
|
||||
}
|
||||
|
||||
return result; // return resultant vector with Convex Hull co-ordinates.
|
||||
S.push(points[i]);
|
||||
}
|
||||
|
||||
std::vector<Point> result;
|
||||
// Now stack has the output points, push them into the resultant vector
|
||||
while (!S.empty()) {
|
||||
Point p = S.top();
|
||||
result.push_back(p);
|
||||
S.pop();
|
||||
}
|
||||
|
||||
return result; // return resultant vector with Convex Hull co-ordinates.
|
||||
}
|
||||
} // namespace geometry::grahamscan
|
||||
|
@ -43,6 +43,8 @@
|
||||
#include <iostream> /// for IO operations
|
||||
#include <map> /// for std::map container
|
||||
|
||||
#include "math.h"
|
||||
|
||||
/**
|
||||
* @namespace numerical_methods
|
||||
* @brief Numerical algorithms/methods
|
||||
@ -64,13 +66,13 @@ namespace simpson_method {
|
||||
* @returns the result of the integration
|
||||
*/
|
||||
double evaluate_by_simpson(std::int32_t N, double h, double a,
|
||||
std::function<double(double)> func) {
|
||||
const std::function<double(double)>& func) {
|
||||
std::map<std::int32_t, double>
|
||||
data_table; // Contains the data points. key: i, value: f(xi)
|
||||
double xi = a; // Initialize xi to the starting point x0 = a
|
||||
|
||||
// Create the data table
|
||||
double temp;
|
||||
double temp = NAN;
|
||||
for (std::int32_t i = 0; i <= N; i++) {
|
||||
temp = func(xi);
|
||||
data_table.insert(
|
||||
@ -82,12 +84,13 @@ double evaluate_by_simpson(std::int32_t N, double h, double a,
|
||||
// Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)
|
||||
double evaluate_integral = 0;
|
||||
for (std::int32_t i = 0; i <= N; i++) {
|
||||
if (i == 0 || i == N)
|
||||
if (i == 0 || i == N) {
|
||||
evaluate_integral += data_table.at(i);
|
||||
else if (i % 2 == 1)
|
||||
} else if (i % 2 == 1) {
|
||||
evaluate_integral += 4 * data_table.at(i);
|
||||
else
|
||||
} else {
|
||||
evaluate_integral += 2 * data_table.at(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply by the coefficient h/3
|
||||
@ -170,7 +173,7 @@ int main(int argc, char** argv) {
|
||||
/// interval. MUST BE EVEN
|
||||
double a = 1, b = 3; /// Starting and ending point of the integration in
|
||||
/// the real axis
|
||||
double h; /// Step, calculated by a, b and N
|
||||
double h = NAN; /// Step, calculated by a, b and N
|
||||
|
||||
bool used_argv_parameters =
|
||||
false; // If argv parameters are used then the assert must be omitted
|
||||
@ -180,18 +183,20 @@ int main(int argc, char** argv) {
|
||||
// displaying messages)
|
||||
if (argc == 4) {
|
||||
N = std::atoi(argv[1]);
|
||||
a = (double)std::atof(argv[2]);
|
||||
b = (double)std::atof(argv[3]);
|
||||
a = std::atof(argv[2]);
|
||||
b = std::atof(argv[3]);
|
||||
// Check if a<b else abort
|
||||
assert(a < b && "a has to be less than b");
|
||||
assert(N > 0 && "N has to be > 0");
|
||||
if (N < 16 || a != 1 || b != 3)
|
||||
if (N < 16 || a != 1 || b != 3) {
|
||||
used_argv_parameters = true;
|
||||
}
|
||||
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
|
||||
<< std::endl;
|
||||
} else
|
||||
} else {
|
||||
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// Find the step
|
||||
h = (b - a) / N;
|
||||
|
@ -4,10 +4,10 @@
|
||||
* (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/)
|
||||
* is an algorithm that computes the inverse fourier transform.
|
||||
* @details
|
||||
* This algorithm has an application in use case scenario where a user wants find coefficients of
|
||||
* a function in a short time by just using points generated by DFT.
|
||||
* Time complexity
|
||||
* this algorithm computes the IDFT in O(nlogn) time in comparison to traditional O(n^2).
|
||||
* This algorithm has an application in use case scenario where a user wants
|
||||
* find coefficients of a function in a short time by just using points
|
||||
* generated by DFT. Time complexity this algorithm computes the IDFT in
|
||||
* O(nlogn) time in comparison to traditional O(n^2).
|
||||
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
||||
*/
|
||||
|
||||
@ -23,14 +23,15 @@
|
||||
*/
|
||||
namespace numerical_methods {
|
||||
/**
|
||||
* @brief InverseFastFourierTransform is a recursive function which returns list of
|
||||
* complex numbers
|
||||
* @brief InverseFastFourierTransform is a recursive function which returns list
|
||||
* of complex numbers
|
||||
* @param p List of Coefficents in form of complex numbers
|
||||
* @param n Count of elements in list p
|
||||
* @returns p if n==1
|
||||
* @returns y if n!=1
|
||||
*/
|
||||
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8_t n) {
|
||||
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p,
|
||||
uint8_t n) {
|
||||
if (n == 1) {
|
||||
return p; /// Base Case To return
|
||||
}
|
||||
@ -39,9 +40,9 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
|
||||
std::complex<double> om = std::complex<double>(
|
||||
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
|
||||
|
||||
om.real(om.real()/n); /// One change in comparison with DFT
|
||||
om.imag(om.imag()/n); /// One change in comparison with DFT
|
||||
|
||||
om.real(om.real() / n); /// One change in comparison with DFT
|
||||
om.imag(om.imag() / n); /// One change in comparison with DFT
|
||||
|
||||
auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power
|
||||
|
||||
@ -52,8 +53,9 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
if (j % 2 == 0) {
|
||||
pe[k1++] = p[j]; /// Assigning values of even Coefficients
|
||||
|
||||
} else
|
||||
} else {
|
||||
po[k2++] = p[j]; /// Assigning value of odd Coefficients
|
||||
}
|
||||
}
|
||||
|
||||
std::complex<double> *ye =
|
||||
@ -75,12 +77,10 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
k1++;
|
||||
k2++;
|
||||
}
|
||||
|
||||
if(n!=2){
|
||||
|
||||
|
||||
if (n != 2) {
|
||||
delete[] pe;
|
||||
delete[] po;
|
||||
|
||||
}
|
||||
|
||||
delete[] ye; /// Deleting dynamic array ye
|
||||
@ -118,16 +118,17 @@ static void test() {
|
||||
std::vector<std::complex<double>> r2 = {
|
||||
{1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2
|
||||
|
||||
std::complex<double> *o1 = numerical_methods::InverseFastFourierTransform(t1, n1);
|
||||
|
||||
std::complex<double> *o2 = numerical_methods::InverseFastFourierTransform(t2, n2);
|
||||
std::complex<double> *o1 =
|
||||
numerical_methods::InverseFastFourierTransform(t1, n1);
|
||||
|
||||
std::complex<double> *o2 =
|
||||
numerical_methods::InverseFastFourierTransform(t2, n2);
|
||||
|
||||
for (uint8_t i = 0; i < n1; i++) {
|
||||
assert((r1[i].real() - o1[i].real() < 0.000000000001) &&
|
||||
(r1[i].imag() - o1[i].imag() <
|
||||
0.000000000001)); /// Comparing for both real and imaginary
|
||||
/// values for test case 1
|
||||
|
||||
}
|
||||
|
||||
for (uint8_t i = 0; i < n2; i++) {
|
||||
@ -135,10 +136,8 @@ static void test() {
|
||||
(r2[i].imag() - o2[i].imag() <
|
||||
0.000000000001)); /// Comparing for both real and imaginary
|
||||
/// values for test case 2
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
delete[] t1;
|
||||
delete[] t2;
|
||||
delete[] o1;
|
||||
|
Loading…
Reference in New Issue
Block a user