clang-format and clang-tidy fixes for e89e4c8c

This commit is contained in:
github-actions 2021-11-06 06:48:57 +00:00
parent c88a858ea2
commit af702116fd
4 changed files with 260 additions and 253 deletions

View File

@ -1,42 +1,47 @@
/******************************************************************************
* @file
* @brief Implementation of the [Convex Hull](https://en.wikipedia.org/wiki/Convex_hull)
* implementation using [Graham Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the subset.
*
* The worst case time complexity of Jarviss Algorithm is O(n^2). Using Grahams
* scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without actually
* computing them (See the compare() function below) because computation of actual
* angles would be inefficient since trigonometric functions are not simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep track
* of recent three points, and find the angle formed by them. Let the three points
* be prev(p), curr(c) and next(n). If orientation of these points (considering them
* in same order) is not counterclockwise, we discard c, otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
#include <iostream> /// for IO Operations
* @file
* @brief Implementation of the [Convex
*Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
*Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the
*subset.
*
* The worst case time complexity of Jarviss Algorithm is O(n^2). Using
*Grahams scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without
*actually computing them (See the compare() function below) because computation
*of actual angles would be inefficient since trigonometric functions are not
*simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep
*track of recent three points, and find the angle formed by them. Let the three
*points be prev(p), curr(c) and next(n). If orientation of these points
*(considering them in same order) is not counterclockwise, we discard c,
*otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
#include <cassert> /// for std::assert
#include <iostream> /// for IO Operations
#include <vector> /// for std::vector
#include "./graham_scan_functions.hpp" /// for all the functions used
/*******************************************************************************
@ -44,18 +49,10 @@
* @returns void
*******************************************************************************/
static void test() {
std::vector<geometry::grahamscan::Point> points = {{0, 3},
{1, 1},
{2, 2},
{4, 4},
{0, 0},
{1, 2},
{3, 1},
{3, 3}};
std::vector<geometry::grahamscan::Point> expected_result = {{0, 3},
{4, 4},
{3, 1},
{0, 0}};
std::vector<geometry::grahamscan::Point> points = {
{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};
std::vector<geometry::grahamscan::Point> expected_result = {
{0, 3}, {4, 4}, {3, 1}, {0, 0}};
std::vector<geometry::grahamscan::Point> derived_result;
std::vector<geometry::grahamscan::Point> res;

View File

@ -1,44 +1,48 @@
/******************************************************************************
* @file
* @brief Implementation of the [Convex Hull](https://en.wikipedia.org/wiki/Convex_hull)
* implementation using [Graham Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the subset.
*
* The worst case time complexity of Jarviss Algorithm is O(n^2). Using Grahams
* scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without actually
* computing them (See the compare() function below) because computation of actual
* angles would be inefficient since trigonometric functions are not simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep track
* of recent three points, and find the angle formed by them. Let the three points
* be prev(p), curr(c) and next(n). If orientation of these points (considering them
* in same order) is not counterclockwise, we discard c, otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
* @file
* @brief Implementation of the [Convex
*Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
*Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the
*subset.
*
* The worst case time complexity of Jarviss Algorithm is O(n^2). Using
*Grahams scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without
*actually computing them (See the compare() function below) because computation
*of actual angles would be inefficient since trigonometric functions are not
*simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep
*track of recent three points, and find the angle formed by them. Let the three
*points be prev(p), curr(c) and next(n). If orientation of these points
*(considering them in same order) is not counterclockwise, we discard c,
*otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
#include <algorithm> /// for std::swap
#include <cstdlib> /// for mathematics and datatype conversion
#include <iostream> /// for IO operations
#include <stack> /// for std::stack
#include <vector> /// for std::vector
#include <algorithm> /// for std::swap
#include <cstdlib> /// for mathematics and datatype conversion
/******************************************************************************
* @namespace geometry::grahamscan
@ -46,42 +50,42 @@
*******************************************************************************/
namespace geometry::grahamscan {
/******************************************************************************
/******************************************************************************
* @struct Point
* @brief for X and Y co-ordinates of the co-ordinate.
*******************************************************************************/
struct Point {
struct Point {
int x, y;
};
};
// A global point needed for sorting points with reference
// to the first point Used in compare function of qsort()
Point p0;
// A global point needed for sorting points with reference
// to the first point Used in compare function of qsort()
Point p0;
/******************************************************************************
/******************************************************************************
* @brief A utility function to find next to top in a stack.
* @param S Stack to be used for the process.
* @returns @param Point Co-ordinates of the Point <int, int>
*******************************************************************************/
Point nextToTop(std::stack<Point> S) {
Point nextToTop(std::stack<Point> S) {
Point p = S.top();
S.pop();
Point res = S.top();
S.push(p);
return res;
}
}
/******************************************************************************
/******************************************************************************
* @brief A utility function to return square of distance between p1 and p2.
* @param p1 Co-ordinates of Point 1 <int, int>.
* @param p2 Co-ordinates of Point 2 <int, int>.
* @returns @param int distance between p1 and p2.
*******************************************************************************/
int distSq(Point p1, Point p2) {
int distSq(Point p1, Point p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
}
/******************************************************************************
/******************************************************************************
* @brief To find orientation of ordered triplet (p, q, r).
* @param p Co-ordinates of Point p <int, int>.
* @param q Co-ordinates of Point q <int, int>.
@ -89,21 +93,22 @@ namespace geometry::grahamscan {
* @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise,
* 2 --> Counterclockwise
*******************************************************************************/
int orientation(Point p, Point q, Point r) {
int orientation(Point p, Point q, Point r) {
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // collinear
if (val == 0)
return 0; // collinear
return (val > 0) ? 1 : 2; // clock or counter-clock wise
}
}
/******************************************************************************
/******************************************************************************
* @brief A function used by library function qsort() to sort an array of
* points with respect to the first point
* @param vp1 Co-ordinates of Point 1 <int, int>.
* @param vp2 Co-ordinates of Point 2 <int, int>.
* @returns @param int distance between p1 and p2.
*******************************************************************************/
int compare(const void *vp1, const void *vp2) {
int compare(const void *vp1, const void *vp2) {
auto *p1 = static_cast<const Point *>(vp1);
auto *p2 = static_cast<const Point *>(vp2);
@ -114,16 +119,15 @@ namespace geometry::grahamscan {
}
return (o == 2) ? -1 : 1;
}
}
/******************************************************************************
/******************************************************************************
* @brief Prints convex hull of a set of n points.
* @param points vector of Point<int, int> with co-ordinates.
* @param size Size of the vector.
* @returns @param vector vector of Conver Hull.
*******************************************************************************/
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
// Find the bottom-most point
int ymin = points[0].y, min = 0;
for (int i = 1; i < size; i++) {
@ -151,8 +155,7 @@ namespace geometry::grahamscan {
int m = 1; // Initialize size of modified array
for (int i = 1; i < size; i++) {
// Keep removing i while angle of i and i+1 is same with respect to p0
while (i < size - 1 &&
orientation(p0, points[i], points[i + 1]) == 0) {
while (i < size - 1 && orientation(p0, points[i], points[i + 1]) == 0) {
i++;
}
@ -160,11 +163,13 @@ namespace geometry::grahamscan {
m++; // Update size of modified array
}
// If modified array of points has less than 3 points, convex hull is not possible
if (m < 3) return {};
// If modified array of points has less than 3 points, convex hull is not
// possible
if (m < 3)
return {};
// Create an empty stack and push first three points to it.
std::stack <Point> S;
std::stack<Point> S;
S.push(points[0]);
S.push(points[1]);
S.push(points[2]);
@ -174,7 +179,8 @@ namespace geometry::grahamscan {
// Keep removing top while the angle formed by
// points next-to-top, top, and points[i] makes
// a non-left turn
while (S.size() > 1 && orientation(nextToTop(S), S.top(), points[i]) != 2) {
while (S.size() > 1 &&
orientation(nextToTop(S), S.top(), points[i]) != 2) {
S.pop();
}
S.push(points[i]);
@ -189,5 +195,5 @@ namespace geometry::grahamscan {
}
return result; // return resultant vector with Convex Hull co-ordinates.
}
}
} // namespace geometry::grahamscan

View File

@ -43,6 +43,8 @@
#include <iostream> /// for IO operations
#include <map> /// for std::map container
#include "math.h"
/**
* @namespace numerical_methods
* @brief Numerical algorithms/methods
@ -64,13 +66,13 @@ namespace simpson_method {
* @returns the result of the integration
*/
double evaluate_by_simpson(std::int32_t N, double h, double a,
std::function<double(double)> func) {
const std::function<double(double)>& func) {
std::map<std::int32_t, double>
data_table; // Contains the data points. key: i, value: f(xi)
double xi = a; // Initialize xi to the starting point x0 = a
// Create the data table
double temp;
double temp = NAN;
for (std::int32_t i = 0; i <= N; i++) {
temp = func(xi);
data_table.insert(
@ -82,13 +84,14 @@ double evaluate_by_simpson(std::int32_t N, double h, double a,
// Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)
double evaluate_integral = 0;
for (std::int32_t i = 0; i <= N; i++) {
if (i == 0 || i == N)
if (i == 0 || i == N) {
evaluate_integral += data_table.at(i);
else if (i % 2 == 1)
} else if (i % 2 == 1) {
evaluate_integral += 4 * data_table.at(i);
else
} else {
evaluate_integral += 2 * data_table.at(i);
}
}
// Multiply by the coefficient h/3
evaluate_integral *= h / 3;
@ -170,7 +173,7 @@ int main(int argc, char** argv) {
/// interval. MUST BE EVEN
double a = 1, b = 3; /// Starting and ending point of the integration in
/// the real axis
double h; /// Step, calculated by a, b and N
double h = NAN; /// Step, calculated by a, b and N
bool used_argv_parameters =
false; // If argv parameters are used then the assert must be omitted
@ -180,18 +183,20 @@ int main(int argc, char** argv) {
// displaying messages)
if (argc == 4) {
N = std::atoi(argv[1]);
a = (double)std::atof(argv[2]);
b = (double)std::atof(argv[3]);
a = std::atof(argv[2]);
b = std::atof(argv[3]);
// Check if a<b else abort
assert(a < b && "a has to be less than b");
assert(N > 0 && "N has to be > 0");
if (N < 16 || a != 1 || b != 3)
if (N < 16 || a != 1 || b != 3) {
used_argv_parameters = true;
}
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
<< std::endl;
} else
} else {
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
<< std::endl;
}
// Find the step
h = (b - a) / N;

View File

@ -4,10 +4,10 @@
* (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/)
* is an algorithm that computes the inverse fourier transform.
* @details
* This algorithm has an application in use case scenario where a user wants find coefficients of
* a function in a short time by just using points generated by DFT.
* Time complexity
* this algorithm computes the IDFT in O(nlogn) time in comparison to traditional O(n^2).
* This algorithm has an application in use case scenario where a user wants
* find coefficients of a function in a short time by just using points
* generated by DFT. Time complexity this algorithm computes the IDFT in
* O(nlogn) time in comparison to traditional O(n^2).
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
*/
@ -23,14 +23,15 @@
*/
namespace numerical_methods {
/**
* @brief InverseFastFourierTransform is a recursive function which returns list of
* complex numbers
* @brief InverseFastFourierTransform is a recursive function which returns list
* of complex numbers
* @param p List of Coefficents in form of complex numbers
* @param n Count of elements in list p
* @returns p if n==1
* @returns y if n!=1
*/
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8_t n) {
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p,
uint8_t n) {
if (n == 1) {
return p; /// Base Case To return
}
@ -40,8 +41,8 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
std::complex<double> om = std::complex<double>(
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
om.real(om.real()/n); /// One change in comparison with DFT
om.imag(om.imag()/n); /// One change in comparison with DFT
om.real(om.real() / n); /// One change in comparison with DFT
om.imag(om.imag() / n); /// One change in comparison with DFT
auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power
@ -52,9 +53,10 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
if (j % 2 == 0) {
pe[k1++] = p[j]; /// Assigning values of even Coefficients
} else
} else {
po[k2++] = p[j]; /// Assigning value of odd Coefficients
}
}
std::complex<double> *ye =
InverseFastFourierTransform(pe, n / 2); /// Recursive Call
@ -76,11 +78,9 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
k2++;
}
if(n!=2){
if (n != 2) {
delete[] pe;
delete[] po;
}
delete[] ye; /// Deleting dynamic array ye
@ -118,16 +118,17 @@ static void test() {
std::vector<std::complex<double>> r2 = {
{1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2
std::complex<double> *o1 = numerical_methods::InverseFastFourierTransform(t1, n1);
std::complex<double> *o1 =
numerical_methods::InverseFastFourierTransform(t1, n1);
std::complex<double> *o2 = numerical_methods::InverseFastFourierTransform(t2, n2);
std::complex<double> *o2 =
numerical_methods::InverseFastFourierTransform(t2, n2);
for (uint8_t i = 0; i < n1; i++) {
assert((r1[i].real() - o1[i].real() < 0.000000000001) &&
(r1[i].imag() - o1[i].imag() <
0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 1
}
for (uint8_t i = 0; i < n2; i++) {
@ -135,10 +136,8 @@ static void test() {
(r2[i].imag() - o2[i].imag() <
0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 2
}
delete[] t1;
delete[] t2;
delete[] o1;