mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Added is_graph_bipartite.cpp
This commit is contained in:
parent
bc73f9dd60
commit
b94c29ce01
135
graph/is_graph_bipartite.cpp
Normal file
135
graph/is_graph_bipartite.cpp
Normal file
@ -0,0 +1,135 @@
|
||||
/**
|
||||
* @file is_graph_bipartite
|
||||
*
|
||||
* @brief Algorithm to check whether a graph is bipartite
|
||||
*
|
||||
* @details
|
||||
* A graph is a collection of nodes also called vertices and these vertices
|
||||
* are connected by edges.A bipartite graph is a graph whose vertices can be
|
||||
* divided into two disjoint and independent sets U and V such that every edge
|
||||
* connects a vertex in U to one in V.
|
||||
* (https://en.wikipedia.org/wiki/Bipartite_graph)
|
||||
* The given Algorithm will determine whether the given graph is bipartite or not
|
||||
*
|
||||
*
|
||||
* Example - Here is a graph g1 with 5 vertices and is bipartite
|
||||
*
|
||||
* 1 4
|
||||
* / \ / \
|
||||
* 2 3 5
|
||||
*
|
||||
* Example - Here is a graph G2 with 3 vertices and is not bipartite
|
||||
*
|
||||
* 1 --- 2
|
||||
* \ /
|
||||
* 3
|
||||
*
|
||||
*
|
||||
* @author [Akshat Vaya](https://github.com/AkVaya)
|
||||
*
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
|
||||
using std::vector;
|
||||
using std::queue;
|
||||
|
||||
const int nax = 5e5 + 1;
|
||||
/**
|
||||
* Class for representing graph as an adjacency list.
|
||||
*/
|
||||
class graph {
|
||||
private:
|
||||
int n; /// size of the graph
|
||||
|
||||
vector<vector <int> > adj; /// adj stores the graph as an adjacency list
|
||||
|
||||
vector<int> side; ///stores the side of the vertex
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor that initializes the graph on creation
|
||||
*/
|
||||
graph(int size = nax){
|
||||
n = size;
|
||||
adj.resize(n);
|
||||
side.resize(n,-1);
|
||||
}
|
||||
|
||||
void addEdge(int u, int v); /// function to add edges to our graph
|
||||
|
||||
bool is_bipartite(); /// function to check whether the graph is bipartite or not
|
||||
|
||||
};
|
||||
/**
|
||||
* @brief Function that add an edge between two nodes or vertices of graph
|
||||
*
|
||||
* @param u is a node or vertex of graph
|
||||
* @param v is a node or vertex of graph
|
||||
*/
|
||||
void graph::addEdge(int u, int v) {
|
||||
adj[u-1].push_back(v-1);
|
||||
adj[v-1].push_back(u-1);
|
||||
}
|
||||
/**
|
||||
* @brief function that checks whether the graph is bipartite or not
|
||||
*/
|
||||
bool graph::is_bipartite(){
|
||||
n = adj.size();
|
||||
side.resize(n,-1);
|
||||
bool check = true;
|
||||
queue<int> q;
|
||||
for (int current_edge = 0; current_edge < n; ++current_edge)
|
||||
{
|
||||
if(side[current_edge] == -1){
|
||||
q.push(current_edge);
|
||||
side[current_edge] = 0;
|
||||
while(q.size()){
|
||||
int current = q.front();
|
||||
q.pop();
|
||||
for(auto neighbour : adj[current]){
|
||||
if(side[neighbour] == -1){
|
||||
side[neighbour] = (1 ^ side[current]);
|
||||
q.push(neighbour);
|
||||
}
|
||||
else{
|
||||
check &= (side[neighbour] != side[current]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return check;
|
||||
}
|
||||
/**
|
||||
* main funtion
|
||||
*/
|
||||
int main(){
|
||||
graph G1(5); /// creating graph G1 with 5 vertices
|
||||
/// adding edges to the graphs as per the illustrated example
|
||||
G1.addEdge(1,2);
|
||||
G1.addEdge(1,3);
|
||||
G1.addEdge(3,4);
|
||||
G1.addEdge(4,5);
|
||||
|
||||
graph G2(3); /// creating graph G2 with 3 vertices
|
||||
/// adding edges to the graphs as per the illustrated example
|
||||
G2.addEdge(1,2);
|
||||
G2.addEdge(1,3);
|
||||
G2.addEdge(2,3);
|
||||
/// checking whether the graphs are bipartite or not
|
||||
if(G1.is_bipartite()){
|
||||
std::cout<<"The given graph G1 is a bipartite graph\n";
|
||||
}
|
||||
else{
|
||||
std::cout<<"The given graph G1 is not a bipartite graph\n";
|
||||
}
|
||||
if(G2.is_bipartite()){
|
||||
std::cout<<"The given graph G2 is a bipartite graph\n";
|
||||
}
|
||||
else{
|
||||
std::cout<<"The given graph G2 is not a bipartite graph\n";
|
||||
}
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user