diff --git a/DIRECTORY.md b/DIRECTORY.md index d2c85ebda..964917504 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -221,6 +221,7 @@ * [Volume](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/volume.cpp) ## Numerical Methods + * [Babylonian Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/babylonian_method.cpp) * [Bisection Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/bisection_method.cpp) * [Brent Method Extrema](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/brent_method_extrema.cpp) * [Composite Simpson Rule](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/composite_simpson_rule.cpp) diff --git a/numerical_methods/babylonian_method.cpp b/numerical_methods/babylonian_method.cpp new file mode 100644 index 000000000..b18bc0dc4 --- /dev/null +++ b/numerical_methods/babylonian_method.cpp @@ -0,0 +1,101 @@ +/** + * @file + * @brief [A babylonian method + * (BM)](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) + * is an algorithm that computes the square root. + * @details + * This algorithm has an application in use case scenario where a user wants + * find accurate square roots of large numbers + * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) + */ + +#include /// for assert +#include /// for IO operations + +#include "math.h" + +/** + * @namespace numerical_methods + * @brief Numerical algorithms/methods + */ + +namespace numerical_methods { + +/** + * @brief Babylonian methods is an iterative function which returns + * square root of radicand + * @param radicand is the radicand + * @returns x1 the square root of radicand + */ + +double babylonian_method(double radicand) { + int i = 1; /// To find initial root or rough approximation + + while (i * i <= radicand) { + i++; + } + + i--; /// Real Initial value will be i-1 as loop stops on +1 value + + double x0 = i; /// Storing previous value for comparison + double x1 = + (radicand / x0 + x0) / 2; /// Storing calculated value for comparison + double temp = NAN; /// Temp variable to x0 and x1 + + while (std::max(x0, x1) - std::min(x0, x1) < 0.0001) { + temp = (radicand / x1 + x1) / 2; /// Newly calculated root + x0 = x1; + x1 = temp; + } + + return x1; /// Returning final root +} + +} // namespace numerical_methods + +/** + * @brief Self-test implementations + * @details + * Declaring two test cases and checking for the error + * in predicted and true value is less than 0.0001. + * @returns void + */ +static void test() { + /* descriptions of the following test */ + + auto testcase1 = 125348; /// Testcase 1 + auto testcase2 = 752080; /// Testcase 2 + + auto real_output1 = 354.045194855; /// Real Output 1 + auto real_output2 = 867.225460881; /// Real Output 2 + + auto test_result1 = numerical_methods::babylonian_method(testcase1); + /// Test result for testcase 1 + auto test_result2 = numerical_methods::babylonian_method(testcase2); + /// Test result for testcase 2 + + assert(std::max(test_result1, real_output1) - + std::min(test_result1, real_output1) < + 0.0001); + /// Testing for test Case 1 + assert(std::max(test_result2, real_output2) - + std::min(test_result2, real_output2) < + 0.0001); + /// Testing for test Case 2 + + std::cout << "All tests have successfully passed!\n"; +} + +/** + * @brief Main function + * @param argc commandline argument count (ignored) + * @param argv commandline array of arguments (ignored) + * calls automated test function to test the working of fast fourier transform. + * @returns 0 on exit + */ + +int main(int argc, char const *argv[]) { + test(); // run self-test implementations + // with 2 defined test cases + return 0; +}