Merge branch 'master' into check_amicable_pair

This commit is contained in:
David Leal 2023-06-20 20:11:06 -06:00 committed by GitHub
commit bc87fea5f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 50 additions and 31 deletions

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.26.4)
cmake_minimum_required(VERSION 3.9)
project(Algorithms_in_C++
LANGUAGES CXX
VERSION 1.0.0

View File

@ -3,10 +3,18 @@
* @brief Program to return the [Aliquot
* Sum](https://en.wikipedia.org/wiki/Aliquot_sum) of a number
*
* \details
* The Aliquot sum s(n) of a non-negative integer n is the sum of all
* @details
* The Aliquot sum \f$s(n)\f$ of a non-negative integer n is the sum of all
* proper divisors of n, that is, all the divisors of n, other than itself.
* For example, the Aliquot sum of 18 = 1 + 2 + 3 + 6 + 9 = 21
*
* Formula:
*
* \f[
* s(n) = \sum_{d|n, d\neq n}d.
* \f]
*
* For example;
* \f$s(18) = 1 + 2 + 3 + 6 + 9 = 21 \f$
*
* @author [SpiderMath](https://github.com/SpiderMath)
*/
@ -19,8 +27,9 @@
* @namespace math
*/
namespace math {
/**
* Function to return the aliquot sum of a number
* @brief to return the aliquot sum of a number
* @param num The input number
*/
uint64_t aliquot_sum(const uint64_t num) {
@ -63,6 +72,5 @@ static void test() {
*/
int main() {
test(); // run the self-test implementations
return 0;
}

View File

@ -1,20 +1,27 @@
/**
* @file
* \brief Program to check if a number is an [Armstrong/Narcissistic
* @brief Program to check if a number is an [Armstrong/Narcissistic
* number](https://en.wikipedia.org/wiki/Narcissistic_number) in decimal system.
*
* \details
* @details
* Armstrong number or [Narcissistic
* number](https://en.wikipedia.org/wiki/Narcissistic_number) is a number that
* is the sum of its own digits raised to the power of the number of digits.
* @author iamnambiar
*
* let n be the narcissistic number,
* \f[F_b(n) = \sum_{i=0}^{k-1}d_{i}^{k}\f] for
* \f$ b > 1 F_b : \N \to \N \f$ where
* \f$ k = \lfloor log_b n\rfloor is the number of digits in the number in base \f$b\f$, and
* \f$ d_i = \frac{n mod b^{i+1} - n mod b^{i}}{b^{i}} \f$
*
* @author [Neeraj Cherkara](https://github.com/iamnambiar)
*/
#include <cassert>
#include <cmath>
#include <iostream>
#include <cassert> /// for assert
#include <cmath> /// for std::pow
#include <iostream> /// for IO operations
/**
* Function to calculate the total number of digits in the number.
* @brief Function to calculate the total number of digits in the number.
* @param num Number
* @return Total number of digits.
*/
@ -28,16 +35,17 @@ int number_of_digits(int num) {
}
/**
* Function to check whether the number is armstrong number or not.
* @param num Number
* @brief Function to check whether the number is armstrong number or not.
* @param number to be checked
* @return `true` if the number is armstrong.
* @return `false` if the number is not armstrong.
*/
bool is_armstrong(int number) {
// If the number is less than 0, then it is not a armstrong number.
// If the number is less than 0, then it is not an armstrong number.
if (number < 0) {
return false;
}
int sum = 0;
int temp = number;
// Finding the total number of digits in the number
@ -46,17 +54,17 @@ bool is_armstrong(int number) {
int rem = temp % 10;
// Finding each digit raised to the power total digit and add it to the
// total sum
sum = sum + std::pow(rem, total_digits);
sum += static_cast<int>(std::pow(rem, total_digits));
temp = temp / 10;
}
return number == sum;
}
/**
* Function for testing the is_armstrong() function
* with all the test cases.
* @brief Self-test implementations
* @returns void
*/
void test() {
static void test() {
// is_armstrong(370) returns true.
assert(is_armstrong(370) == true);
// is_armstrong(225) returns false.
@ -69,12 +77,15 @@ void test() {
assert(is_armstrong(0) == true);
// is_armstrong(12) returns false.
assert(is_armstrong(12) == false);
std::cout << "All tests have successfully passed!\n";
}
/**
* Main Function
* @brief Main Function
* @returns 0 on exit
*/
int main() {
test();
test(); // run self-test implementations
return 0;
}