From bcb6fa0a41025870eccc203f5713ab9bd44d78cc Mon Sep 17 00:00:00 2001 From: ggkogkou Date: Wed, 20 Oct 2021 15:58:56 +0300 Subject: [PATCH] Corrections --- .../midpoint_integral_method.cpp | 154 ++++++++++++++++++ .../midpoint_integral_method.hpp | 3 - 2 files changed, 154 insertions(+), 3 deletions(-) create mode 100644 numerical_methods/midpoint_integral_method.cpp delete mode 100644 numerical_methods/midpoint_integral_method.hpp diff --git a/numerical_methods/midpoint_integral_method.cpp b/numerical_methods/midpoint_integral_method.cpp new file mode 100644 index 000000000..568444181 --- /dev/null +++ b/numerical_methods/midpoint_integral_method.cpp @@ -0,0 +1,154 @@ +#include +#include +#include +#include +#include +#include + +/*! + * @title Calculate definite integrals with midpoint method + * @see https://en.wikipedia.org/wiki/Midpoint_method + * @brief A numerical method for easy approximation of integrals + * @details The idea is to split the interval into N of intervals and use as interpolation points the xi + * for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the + * first and last points of the interval of the integration [a, b]. + * + * We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula: + * I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} + * + * In this program there are 4 sample test functions f, g, k, l that are evaluated in the same interval [1, 3. + * + * Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b. + * In this case if the default values N=16, a=1, b=3 are changed then the tests/assert are disabled. + * + * In the end of the main() and if and only if N, a, b are on their default values, + * i compare the program's result with the one from mathematical software with 2 decimal points margin. + * + * Add your own sample function by replacing one of the f, g, k, l and the corresponding assert + * + * @author ggkogkou +*/ + +/** + * @namespace midpoint_rule + * @brief Contains the function of the midpoint method implementation +*/ +namespace midpoint_rule{ + /*! + * @fn double midpoint(const int N, const double h, const double a, const std::function& func) + * @brief Implement midpoint method + * @param N number of intervals + * @param h step + * @param a x0 + * @param func The function that will be evaluated + * @returns the result of the integration + */ + double midpoint(const int N, const double h, const double a, const std::function& func){ + std::map data_table; /// Contains the data points, key: i, value: f(xi) + double xi = a; /// Initialize xi to the starting point x0 = a + + // Create the data table + /// Loop from x0 to xN-1 + double temp; + for(int i=0; i(i, temp)); /// add i and f(xi) + xi += h; /// Get the next point xi for the next iteration + } + + /// Evaluate the integral. + // Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} + double evaluate_integral = 0; + for(int i=0; i 0 && "N has to be > 0"); + if(N<4 || a!=1 || b!=3) used_argv_parameters = true; + std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b << std::endl; + } + else + std::cout << "Default N=" << N << ", a=" << a << ", b=" << b << std::endl; + + // Find the step + h = (b-a)/N; + + // Call midpoint() for each of the test functions f, g, k, l + // Assert with two decimal point precision + double result_f = midpoint_rule::midpoint(N, h, a, f); + assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong"); + std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl; + + double result_g = midpoint_rule::midpoint(N, h, a, g); + assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong"); + std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl; + + double result_k = midpoint_rule::midpoint(N, h, a, k); + assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong"); + std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl; + + double result_l = midpoint_rule::midpoint(N, h, a, l); + assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong"); + std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl; + + return 0; +} + +double f(double x){ + return std::sqrt(x) + std::log(x); +} + +double g(double x){ + return std::exp(-x) * (4 - std::pow(x, 2)); +} + +double k(double x){ + return std::sqrt(2*std::pow(x, 3)+3); +} + +double l(double x){ + return x + std::log(2*x+1); +} diff --git a/numerical_methods/midpoint_integral_method.hpp b/numerical_methods/midpoint_integral_method.hpp deleted file mode 100644 index a5800d2d5..000000000 --- a/numerical_methods/midpoint_integral_method.hpp +++ /dev/null @@ -1,3 +0,0 @@ -#pragma once - -class \ No newline at end of file