updated documentation - NOTE TESTS FAIL

@yanglbme this algorithm does not give right answers
This commit is contained in:
Krishna Vedala 2020-05-28 13:39:58 -04:00
parent 00c8c0bfdb
commit be997d3da3
No known key found for this signature in database
GPG Key ID: BA19ACF8FC8792F7

View File

@ -1,121 +1,195 @@
/**
* @file
* @brief Get centre and radius of the
* [smallest circle](https://en.wikipedia.org/wiki/Smallest-circle_problem)
* that circumscribes given set of points.
*
* @see [other
* implementation](https://www.nayuki.io/page/smallest-enclosing-circle)
*/
#include <cmath>
#include <iostream> #include <iostream>
#include <vector> #include <vector>
#include <math.h>
using namespace std; /** Define a point */
struct Point {
double x, /**< abscissa */
y; /**< ordinate */
struct Point /** construct a point
{ * \param [in] a absicca (default = 0.0)
double x, y; * \param [in] b ordinate (default = 0.0)
Point(double a = 0.0, double b = 0.0) */
{ Point(double a = 0.0, double b = 0.0) {
x = a; x = a;
y = b; y = b;
} }
}; };
double LenghtLine(Point A, Point B) /** Compute the Euclidian distance between two points \f$A\equiv(x_1,y_1)\f$ and
{ * \f$B\equiv(x_2,y_2)\f$ using the formula:
return sqrt(abs((B.x - A.x) * (B.x - A.x)) + abs((B.y - A.y) * (B.y - A.y))); * \f[d=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\f]
*
* \param [in] A point A
* \param [in] B point B
* \return ditance
*/
double LenghtLine(const Point &A, const Point &B) {
double dx = B.x - A.x;
double dy = B.y - A.y;
return std::sqrt((dx * dx) + (dy * dy));
} }
double TriangleArea(Point A, Point B, Point C) /**
{ * Compute the area of triangle formed by three points using [Heron's
* formula](https://en.wikipedia.org/wiki/Heron%27s_formula).
* If the lengths of the sides of the triangle are \f$a,\,b,\,c\f$ and
* \f$s=\displaystyle\frac{a+b+c}{2}\f$ is the semi-perimeter then the area is
* given by \f[A=\sqrt{s(s-a)(s-b)(s-c)}\f]
* \param [in] A vertex A
* \param [in] B vertex B
* \param [in] C vertex C
* \returns area of triangle
*/
double TriangleArea(const Point &A, const Point &B, const Point &C) {
double a = LenghtLine(A, B); double a = LenghtLine(A, B);
double b = LenghtLine(B, C); double b = LenghtLine(B, C);
double c = LenghtLine(C, A); double c = LenghtLine(C, A);
double p = (a + b + c) / 2; double p = (a + b + c) / 2;
return sqrt(p * (p - a) * (p - b) * (p - c)); return std::sqrt(p * (p - a) * (p - b) * (p - c));
} }
bool PointInCircle(vector<Point> &P, Point Center, double R) /**
{ * Check if a set of points lie within given circle. This is true if the
for (size_t i = 0; i < P.size(); i++) * distance of all the points from the centre of the circle is less than the
{ * radius of the circle
* \param [in] P set of points to check
* \param [in] Center coordinates to centre of the circle
* \param [in] R radius of the circle
* \returns True if P lies on or within the circle
* \returns False if P lies outside the circle
*/
bool PointInCircle(const std::vector<Point> &P, const Point &Center, double R) {
for (size_t i = 0; i < P.size(); i++) {
if (LenghtLine(P[i], Center) > R) if (LenghtLine(P[i], Center) > R)
return false; return false;
} }
return true; return true;
} }
double circle(vector<Point> P) /**
{ * Find the centre and radius of a circle enclosing a set of points.\n
* The function returns the radius of the circle and prints the coordinated of
* the centre of the circle.
* \param [in] P vector of points
* \returns radius of the circle
*/
double circle(const std::vector<Point> &P) {
double minR = INT8_MAX; double minR = INT8_MAX;
double R; double R;
Point C; Point C;
Point minC; Point minC;
/* This code is invalid and does not give correct result for TEST 3
// for each point in the list
for (size_t i = 0; i < P.size() - 2; i++) for (size_t i = 0; i < P.size() - 2; i++)
// for every subsequent point in the list
for (size_t j = i + 1; j < P.size(); j++) for (size_t j = i + 1; j < P.size(); j++)
for (size_t k = j + 1; k < P.size(); k++) // for every subsequent point in the list
{ for (size_t k = j + 1; k < P.size(); k++) {
C.x = -0.5 * ((P[i].y * (P[j].x * P[j].x + P[j].y * P[j].y - P[k].x * P[k].x - P[k].y * P[k].y) + P[j].y * (P[k].x * P[k].x + P[k].y * P[k].y - P[i].x * P[i].x - P[i].y * P[i].y) + P[k].y * (P[i].x * P[i].x + P[i].y * P[i].y - P[j].x * P[j].x - P[j].y * P[j].y)) / (P[i].x * (P[j].y - P[k].y) + P[j].x * (P[k].y - P[i].y) + P[k].x * (P[i].y - P[j].y))); // here, we now have picked three points from the given set
C.y = 0.5 * ((P[i].x * (P[j].x * P[j].x + P[j].y * P[j].y - P[k].x * P[k].x - P[k].y * P[k].y) + P[j].x * (P[k].x * P[k].x + P[k].y * P[k].y - P[i].x * P[i].x - P[i].y * P[i].y) + P[k].x * (P[i].x * P[i].x + P[i].y * P[i].y - P[j].x * P[j].x - P[j].y * P[j].y)) / (P[i].x * (P[j].y - P[k].y) + P[j].x * (P[k].y - P[i].y) + P[k].x * (P[i].y - P[j].y))); of
R = (LenghtLine(P[i], P[j]) * LenghtLine(P[j], P[k]) * LenghtLine(P[k], P[i])) / (4 * TriangleArea(P[i], P[j], P[k])); // points that we can use
if (!PointInCircle(P, C, R)) // viz., P[i], P[j] and P[k]
{ C.x = -0.5 * ((P[i].y * (P[j].x * P[j].x + P[j].y * P[j].y -
continue; P[k].x * P[k].x - P[k].y * P[k].y)
+ P[j].y * (P[k].x * P[k].x + P[k].y * P[k].y - P[i].x * P[i].x - P[i].y
* P[i].y) + P[k].y * (P[i].x * P[i].x + P[i].y * P[i].y - P[j].x * P[j].x
- P[j].y * P[j].y)) / (P[i].x * (P[j].y - P[k].y) + P[j].x * (P[k].y -
P[i].y) + P[k].x * (P[i].y - P[j].y))); C.y = 0.5 * ((P[i].x * (P[j].x *
P[j].x + P[j].y * P[j].y - P[k].x * P[k].x - P[k].y * P[k].y) + P[j].x *
(P[k].x * P[k].x + P[k].y * P[k].y - P[i].x * P[i].x - P[i].y * P[i].y) +
P[k].x * (P[i].x * P[i].x + P[i].y * P[i].y -
P[j].x * P[j].x - P[j].y * P[j].y))
/ (P[i].x * (P[j].y - P[k].y) + P[j].x * (P[k].y - P[i].y) + P[k].x *
(P[i].y - P[j].y))); R = (LenghtLine(P[i], P[j]) * LenghtLine(P[j], P[k])
* LenghtLine(P[k], P[i])) / (4 * TriangleArea(P[i], P[j], P[k])); if
(!PointInCircle(P, C, R)) { continue;
} }
if (R <= minR) if (R <= minR) {
{
minR = R; minR = R;
minC = C; minC = C;
} }
} }
*/
// for each point in the list
for (size_t i = 0; i < P.size() - 1; i++) for (size_t i = 0; i < P.size() - 1; i++)
for (size_t j = i + 1; j < P.size(); j++) // for every subsequent point in the list
{ for (size_t j = i + 1; j < P.size(); j++) {
C.x = (P[i].x + P[j].x) / 2; C.x = (P[i].x + P[j].x) / 2;
C.y = (P[i].y + P[j].y) / 2; C.y = (P[i].y + P[j].y) / 2;
R = LenghtLine(C, P[i]); R = LenghtLine(C, P[i]);
if (!PointInCircle(P, C, R)) if (!PointInCircle(P, C, R)) {
{
continue; continue;
} }
if (R <= minR) if (R <= minR) {
{
minR = R; minR = R;
minC = C; minC = C;
} }
} }
cout << minC.x << " " << minC.y << endl; std::cout << minC.x << " " << minC.y << std::endl;
return minR; return minR;
} }
void test() /** Test case: result should be:
{ * \n Circle with
vector<Point> Pv(5); * \n radius 3.318493136080724
* \n centre at (3.0454545454545454 1.3181818181818181)
*/
void test() {
std::vector<Point> Pv(5);
Pv.push_back(Point(0, 0)); Pv.push_back(Point(0, 0));
Pv.push_back(Point(1, 3)); Pv.push_back(Point(1, 3));
Pv.push_back(Point(4, 1)); Pv.push_back(Point(4, 1));
Pv.push_back(Point(5, 4)); Pv.push_back(Point(5, 4));
Pv.push_back(Point(3, -2)); Pv.push_back(Point(3, -2));
cout << circle(Pv) << endl; std::cout << circle(Pv) << std::endl;
} }
void test2() /** Test case: result should be:
{ * \n Circle with
vector<Point> Pv(4); * \n radius 1.4142135623730951
* \n centre at (1.0 1.0)
*/
void test2() {
std::vector<Point> Pv(4);
Pv.push_back(Point(0, 0)); Pv.push_back(Point(0, 0));
Pv.push_back(Point(0, 2)); Pv.push_back(Point(0, 2));
Pv.push_back(Point(2, 2)); Pv.push_back(Point(2, 2));
Pv.push_back(Point(2, 0)); Pv.push_back(Point(2, 0));
cout << circle(Pv) << endl; std::cout << circle(Pv) << std::endl;
} }
void test3() /** Test case: result should be:
{ * \n Circle with
vector<Point> Pv(3); * \n radius 1.821078397711709
* \n centre at (2.142857142857143 1.7857142857142856)
*/
void test3() {
std::vector<Point> Pv(3);
Pv.push_back(Point(0.5, 1)); Pv.push_back(Point(0.5, 1));
Pv.push_back(Point(3.5, 3)); Pv.push_back(Point(3.5, 3));
Pv.push_back(Point(2.5, 0)); Pv.push_back(Point(2.5, 0));
cout << circle(Pv) << endl; std::cout << circle(Pv) << std::endl;
} }
int main()
{ /** Main program */
int main() {
test(); test();
cout << endl; std::cout << std::endl;
test2(); test2();
cout << endl; std::cout << std::endl;
test3(); test3();
return 0; return 0;
} }