diff --git a/graph/is_graph_bipartite.cpp b/graph/is_graph_bipartite.cpp
index baadf71fa..0c4993ff6 100644
--- a/graph/is_graph_bipartite.cpp
+++ b/graph/is_graph_bipartite.cpp
@@ -1,33 +1,33 @@
/**
* @file
*
- * @brief Algorithm to check whether a graph is [bipartite](https://en.wikipedia.org/wiki/Bipartite_graph)
- *
- * @details
- * A graph is a collection of nodes also called vertices and these vertices
- * are connected by edges.A bipartite graph is a graph whose vertices can be
- * divided into two disjoint and independent sets U and V such that every edge
- * connects a vertex in U to one in V.
- *
- * The given Algorithm will determine whether the given graph is bipartite or not
- *
- *
- * Example - Here is a graph g1 with 5 vertices and is bipartite
- *
- * 1 4
- * / \ / \
- * 2 3 5
- *
- * Example - Here is a graph G2 with 3 vertices and is not bipartite
- *
- * 1 --- 2
- * \ /
- * 3
- *
- *
+ * @brief Algorithm to check whether a graph is [bipartite](https://en.wikipedia.org/wiki/Bipartite_graph)
+ *
+ * @details
+ * A graph is a collection of nodes also called vertices and these vertices
+ * are connected by edges.A bipartite graph is a graph whose vertices can be
+ * divided into two disjoint and independent sets U and V such that every edge
+ * connects a vertex in U to one in V.
+ *
+ * The given Algorithm will determine whether the given graph is bipartite or not
+ *
+ *
+ * Example - Here is a graph g1 with 5 vertices and is bipartite
+ *
+ * 1 4
+ * / \ / \
+ * 2 3 5
+ *
+ * Example - Here is a graph G2 with 3 vertices and is not bipartite
+ *
+ * 1 --- 2
+ * \ /
+ * 3
+ *
+ *
+ *
+ * @author [Akshat Vaya](https://github.com/AkVaya)
*
- * @author [Akshat Vaya](https://github.com/AkVaya)
- *
*/
#include
#include
@@ -37,127 +37,124 @@
* @namespace graph
* @brief Graph algorithms
*/
-namespace graph{
- /**
- * @namespace is_graph_bipartite
- * @brief Functions for checking whether a graph is bipartite or not
- */
- namespace is_graph_bipartite{
- /**
- * @brief Class for representing graph as an adjacency list.
- */
- class Graph {
- private:
- int n; /// size of the graph
+namespace graph {
+ /**
+ * @namespace is_graph_bipartite
+ * @brief Functions for checking whether a graph is bipartite or not
+ */
+ namespace is_graph_bipartite {
+ /**
+ * @brief Class for representing graph as an adjacency list.
+ */
+ class Graph {
+ private:
+ int n; /// size of the graph
- std::vector > adj; /// adj stores the graph as an adjacency list
+ std::vector< std::vector > adj; /// adj stores the graph as an adjacency list
- std::vector side; ///stores the side of the vertex
+ std::vector side; ///stores the side of the vertex
- static const int nax = 5e5 + 1;
+ static const int nax = 5e5 + 1;
+ public:
+ /**
+ * @brief Constructor that initializes the graph on creation
+ */
+ explicit Graph(int size=nax){
+ n = size;
+ adj.resize(n);
+ side.resize(n, -1);
+ }
- public:
- /**
- * @brief Constructor that initializes the graph on creation
- */
- explicit Graph(int size = nax){
- n = size;
- adj.resize(n);
- side.resize(n,-1);
- }
+ void addEdge(int u, int v); /// function to add edges to our graph
- void addEdge(int u, int v); /// function to add edges to our graph
-
- bool is_bipartite(); /// function to check whether the graph is bipartite or not
-
- };
- /**
- * @brief Function that add an edge between two nodes or vertices of graph
- *
- * @param u is a node or vertex of graph
- * @param v is a node or vertex of graph
- */
- void Graph::addEdge(int u, int v) {
- adj[u-1].push_back(v-1);
- adj[v-1].push_back(u-1);
- }
- /**
- * @brief function that checks whether the graph is bipartite or not
- * the function returns true if the graph is a bipartite graph
- * the function returns false if the graph is not a bipartite graph
- *
- * @details
- * Here, side refers to the two disjoint subsets of the bipartite graph.
- * Initially, the values of side are set to -1 which is an unassigned state. A for loop is run for every vertex of the graph.
- * If the current edge has no side assigned to it, then a Breadth First Search operation is performed.
- * If two neighbours have the same side then the graph will not be bipartite and the value of check becomes false.
- * If and only if each pair of neighbours have different sides, the value of check will be true and hence the graph bipartite.
- *
- */
- bool Graph::is_bipartite(){
- bool check = true;
- std::queue q;
- for (int current_edge = 0; current_edge < n; ++current_edge)
- {
- if(side[current_edge] == -1){
- q.push(current_edge);
- side[current_edge] = 0;
- while(q.size()){
- int current = q.front();
- q.pop();
- for(auto neighbour : adj[current]){
- if(side[neighbour] == -1){
- side[neighbour] = (1 ^ side[current]);
- q.push(neighbour);
- }
- else{
- check &= (side[neighbour] != side[current]);
- }
- }
- }
- }
- }
- return check;
- }
- } /// namespace is_graph_bipartite
-} /// namespace graph
+ bool is_bipartite(); /// function to check whether the graph is bipartite or not
+ };
+ /**
+ * @brief Function that add an edge between two nodes or vertices of graph
+ *
+ * @param u is a node or vertex of graph
+ * @param v is a node or vertex of graph
+ */
+ void Graph::addEdge(int u, int v) {
+ adj[u - 1].push_back(v - 1);
+ adj[v - 1].push_back(u - 1);
+ }
+ /**
+ * @brief function that checks whether the graph is bipartite or not
+ * the function returns true if the graph is a bipartite graph
+ * the function returns false if the graph is not a bipartite graph
+ *
+ * @details
+ * Here, side refers to the two disjoint subsets of the bipartite graph.
+ * Initially, the values of side are set to -1 which is an unassigned state. A for loop is run for every vertex of the graph.
+ * If the current edge has no side assigned to it, then a Breadth First Search operation is performed.
+ * If two neighbours have the same side then the graph will not be bipartite and the value of check becomes false.
+ * If and only if each pair of neighbours have different sides, the value of check will be true and hence the graph bipartite.
+ *
+ */
+ bool Graph::is_bipartite(){
+ bool check = true;
+ std::queue q;
+ for (int current_edge = 0; current_edge < n; ++current_edge) {
+ if (side[current_edge] == -1){
+ q.push(current_edge);
+ side[current_edge] = 0;
+ while (q.size()) {
+ int current = q.front();
+ q.pop();
+ for (auto neighbour : adj[current]) {
+ if (side[neighbour] == -1) {
+ side[neighbour] = (1 ^ side[current]);
+ q.push(neighbour);
+ }
+ else {
+ check &= (side[neighbour] != side[current]);
+ }
+ }
+ }
+ }
+ }
+ return check;
+ }
+ } // namespace is_graph_bipartite
+} // namespace graph
/**
- * Function to test the above algorithm
- * @returns none
+ * Function to test the above algorithm
+ * @returns none
*/
static void test(){
- graph::is_graph_bipartite::Graph G1(5); /// creating graph G1 with 5 vertices
- /// adding edges to the graphs as per the illustrated example
- G1.addEdge(1,2);
- G1.addEdge(1,3);
- G1.addEdge(3,4);
- G1.addEdge(4,5);
+ graph::is_graph_bipartite::Graph G1(5); /// creating graph G1 with 5 vertices
+ /// adding edges to the graphs as per the illustrated example
+ G1.addEdge(1, 2);
+ G1.addEdge(1, 3);
+ G1.addEdge(3, 4);
+ G1.addEdge(4, 5);
- graph::is_graph_bipartite::Graph G2(3); /// creating graph G2 with 3 vertices
- /// adding edges to the graphs as per the illustrated example
- G2.addEdge(1,2);
- G2.addEdge(1,3);
- G2.addEdge(2,3);
+ graph::is_graph_bipartite::Graph G2(3); /// creating graph G2 with 3 vertices
+ /// adding edges to the graphs as per the illustrated example
+ G2.addEdge(1, 2);
+ G2.addEdge(1, 3);
+ G2.addEdge(2, 3);
- /// checking whether the graphs are bipartite or not
- if(G1.is_bipartite()){
- std::cout<<"The given graph G1 is a bipartite graph\n";
- }
- else{
- std::cout<<"The given graph G1 is not a bipartite graph\n";
- }
- if(G2.is_bipartite()){
- std::cout<<"The given graph G2 is a bipartite graph\n";
- }
- else{
- std::cout<<"The given graph G2 is not a bipartite graph\n";
- }
+ /// checking whether the graphs are bipartite or not
+ if (G1.is_bipartite()) {
+ std::cout<<"The given graph G1 is a bipartite graph\n";
+ }
+ else {
+ std::cout<<"The given graph G1 is not a bipartite graph\n";
+ }
+ if (G2.is_bipartite()) {
+ std::cout<<"The given graph G2 is a bipartite graph\n";
+ }
+ else {
+ std::cout<<"The given graph G2 is not a bipartite graph\n";
+ }
}
/**
* Main function
*/
-int main(){
- test(); ///Testing
- return 0;
+int main() {
+ test(); ///Testing
+ return 0;
}