Merge pull request #888 from ayaankhan98/master

fix: LGTM code quality and Added docs
This commit is contained in:
Krishna Vedala 2020-06-23 17:02:57 -04:00 committed by GitHub
commit d958eec03b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 141 additions and 39 deletions

View File

@ -13,13 +13,16 @@ class MinHeap {
int heap_size; ///< Current number of elements in min heap
public:
/** Constructor
/** Constructor: Builds a heap from a given array a[] of given size
* \param[in] capacity initial heap capacity
*/
MinHeap(int capacity);
explicit MinHeap(int cap) {
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
/** to heapify a subtree with the root at given index
*/
/** to heapify a subtree with the root at given index */
void MinHeapify(int);
int parent(int i) { return (i - 1) / 2; }
@ -44,14 +47,9 @@ class MinHeap {
/** Inserts a new key 'k' */
void insertKey(int k);
};
/** Constructor: Builds a heap from a given array a[] of given size */
MinHeap::MinHeap(int cap) {
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
~MinHeap() { delete[] harr; }
};
// Inserts a new key 'k'
void MinHeap::insertKey(int k) {

View File

@ -1,3 +1,24 @@
/**
*
* \file
* \brief [Disjoint Sets Data Structure
* (Disjoint Sets)](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)
*
* \author [leoyang429](https://github.com/leoyang429)
*
* \details
* A disjoint set data structure (also called union find or merge find set)
* is a data structure that tracks a set of elements partitioned into a number
* of disjoint (non-overlapping) subsets.
* Some situations where disjoint sets can be used are-
* to find connected components of a graph, kruskal's algorithm for finding
* Minimum Spanning Tree etc.
* There are two operation which we perform on disjoint sets -
* 1) Union
* 2) Find
*
*/
#include <iostream>
#include <vector>
@ -5,16 +26,30 @@ using std::cout;
using std::endl;
using std::vector;
vector<int> root, rnk;
vector<int> root, rank;
/**
*
* Function to create a set
* @param n number of element
*
*/
void CreateSet(int n) {
root = vector<int>(n + 1);
rnk = vector<int>(n + 1, 1);
rank = vector<int>(n + 1, 1);
for (int i = 1; i <= n; ++i) {
root[i] = i;
}
}
/**
*
* Find operation takes a number x and returns the set to which this number
* belongs to.
* @param x element of some set
* @return set to which x belongs to
*
*/
int Find(int x) {
if (root[x] == x) {
return x;
@ -22,22 +57,39 @@ int Find(int x) {
return root[x] = Find(root[x]);
}
/**
*
* A utility function to check if x and y are from same set or not
* @param x element of some set
* @param y element of some set
*
*/
bool InSameUnion(int x, int y) { return Find(x) == Find(y); }
/**
*
* Union operation combines two disjoint sets to make a single set
* in this union function we pass two elements and check if they are
* from different sets then combine those sets
* @param x element of some set
* @param y element of some set
*
*/
void Union(int x, int y) {
int a = Find(x), b = Find(y);
if (a != b) {
if (rnk[a] < rnk[b]) {
if (rank[a] < rank[b]) {
root[a] = b;
} else if (rnk[a] > rnk[b]) {
} else if (rank[a] > rank[b]) {
root[b] = a;
} else {
root[a] = b;
++rnk[b];
++rank[b];
}
}
}
/** Main function */
int main() {
// tests CreateSet & Find
int n = 100;

View File

@ -1,49 +1,101 @@
// Kind of better version of Bubble sort.
// While Bubble sort is comparering adjacent value, Combsort is using gap larger
// than 1 Best case: O(n) Worst case: O(n ^ 2)
/**
*
* \file
* \brief [Comb Sort Algorithm
* (Comb Sort)](https://en.wikipedia.org/wiki/Comb_sort)
*
* \author
*
* \details
* - A better version of bubble sort algorithm
* - Bubble sort compares adjacent values whereas comb sort uses gap larger
* than 1
* - Best case Time complexity O(n)
* Worst case Time complexity O(n^2)
*
*/
#include <algorithm>
#include <cassert>
#include <iostream>
int a[100005];
int n;
/**
*
* Find the next gap by shrinking the current gap by shrink factor of 1.3
* @param gap current gap
* @return new gap
*
*/
int FindNextGap(int gap) {
gap = (gap * 10) / 13;
int FindNextGap(int x) {
x = (x * 10) / 13;
return std::max(1, x);
return std::max(1, gap);
}
void CombSort(int a[], int l, int r) {
// Init gap
int gap = n;
/** Function to sort array
*
* @param arr array to be sorted
* @param l start index of array
* @param r end index of array
*
*/
void CombSort(int *arr, int l, int r) {
/**
*
* initial gap will be maximum and the maximum possible value is
* the size of the array that is n and which is equal to r in this
* case so to avoid passing an extra parameter n that is the size of
* the array we are using r to initialize the initial gap.
*
*/
int gap = r;
// Initialize swapped as true to make sure that loop runs
/// Initialize swapped as true to make sure that loop runs
bool swapped = true;
// Keep running until gap = 1 or none elements were swapped
/// Keep running until gap = 1 or none elements were swapped
while (gap != 1 || swapped) {
// Find next gap
/// Find next gap
gap = FindNextGap(gap);
swapped = false;
// Compare all elements with current gap
/// Compare all elements with current gap
for (int i = l; i <= r - gap; ++i) {
if (a[i] > a[i + gap]) {
std::swap(a[i], a[i + gap]);
if (arr[i] > arr[i + gap]) {
std::swap(arr[i], arr[i + gap]);
swapped = true;
}
}
}
}
void tests() {
/// Test 1
int arr1[10] = {34, 56, 6, 23, 76, 34, 76, 343, 4, 76};
CombSort(arr1, 0, 10);
assert(std::is_sorted(arr1, arr1 + 10));
std::cout << "Test 1 passed\n";
/// Test 2
int arr2[8] = {-6, 56, -45, 56, 0, -1, 8, 8};
CombSort(arr2, 0, 8);
assert(std::is_sorted(arr2, arr2 + 8));
std::cout << "Test 2 Passed\n";
}
/** Main function */
int main() {
/// Running predefined tests
tests();
/// For user interaction
int n;
std::cin >> n;
for (int i = 1; i <= n; ++i) std::cin >> a[i];
CombSort(a, 1, n);
for (int i = 1; i <= n; ++i) std::cout << a[i] << ' ';
int *arr = new int[n];
for (int i = 0; i < n; ++i) std::cin >> arr[i];
CombSort(arr, 0, n);
for (int i = 0; i < n; ++i) std::cout << arr[i] << ' ';
delete[] arr;
return 0;
}