mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
initial hill-cipher commit - does not execute corectly
This commit is contained in:
parent
7218eeb5b8
commit
db28999ca3
411
ciphers/hill_cipher.cpp
Normal file
411
ciphers/hill_cipher.cpp
Normal file
@ -0,0 +1,411 @@
|
||||
/**
|
||||
* @file hill_cipher.cpp
|
||||
* @author [Krishna Vedala](https://github.com/kvedala)
|
||||
* @brief Implementation of [Hill
|
||||
* cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm.
|
||||
*
|
||||
* Program to generate the encryption-decryption key and perform encryption and
|
||||
* decryption of ASCII text.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <ctime>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <valarray>
|
||||
#include <vector>
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#include "../numerical_methods/lu_decomposition.h"
|
||||
|
||||
/**
|
||||
* operator to print a matrix
|
||||
*/
|
||||
template <typename T>
|
||||
static std::ostream &operator<<(std::ostream &out, matrix<T> const &v) {
|
||||
const int width = 15;
|
||||
const char separator = ' ';
|
||||
|
||||
for (size_t row = 0; row < v.size(); row++) {
|
||||
for (size_t col = 0; col < v[row].size(); col++)
|
||||
out << std::left << std::setw(width) << std::setfill(separator)
|
||||
<< v[row][col];
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/** \namespace ciphers
|
||||
* \brief Algorithms for encryption and decryption
|
||||
*/
|
||||
namespace ciphers {
|
||||
/** dictionary of characters that can be encrypted and decrypted */
|
||||
static const std::string STRKEY =
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789~!@#$%^&"
|
||||
"*()_+`-=[]{}|;':\",./<>?\\\r\n ";
|
||||
|
||||
/**
|
||||
* @brief Implementation of [Hill
|
||||
* Cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm
|
||||
*/
|
||||
class HillCipher {
|
||||
private:
|
||||
/**
|
||||
* @brief Function to generate a random integer in a given interval
|
||||
*
|
||||
* @param a lower limit of interval
|
||||
* @param b upper limit of interval
|
||||
* @tparam T type of output
|
||||
* @return random integer in the interval \f$[a,b)\f$
|
||||
*/
|
||||
template <typename T1, typename T2>
|
||||
static const T2 rand_range(T1 a, T1 b) {
|
||||
// generate random number between 0 and 1
|
||||
long double r = static_cast<long double>(std::rand()) / RAND_MAX;
|
||||
|
||||
// scale and return random number as integer
|
||||
return static_cast<T2>(r * (b - a) + a);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Function overload to fill a matrix with random integers in a given
|
||||
* interval
|
||||
*
|
||||
* @param M pointer to matrix to be filled with random numbers
|
||||
* @param a lower limit of interval
|
||||
* @param b upper limit of interval
|
||||
* @tparam T1 type of input range
|
||||
* @tparam T2 type of matrix
|
||||
* @return determinant of generated random matrix
|
||||
*/
|
||||
template <typename T1, typename T2>
|
||||
static const double rand_range(matrix<T2> *M, T1 a, T1 b) {
|
||||
for (size_t i = 0; i < M->size(); i++) {
|
||||
for (size_t j = 0; j < M[0][0].size(); j++) {
|
||||
M[0][i][j] = rand_range<T1, T2>(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
return determinant_lu(*M);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute
|
||||
* [GCD](https://en.wikipedia.org/wiki/Greatest_common_divisor) of two
|
||||
* integers using Euler's algorithm
|
||||
*
|
||||
* @param a first number
|
||||
* @param b second number
|
||||
* @return GCD of \f$a\f$ and \f$b\f$
|
||||
*/
|
||||
template <typename T>
|
||||
static const T gcd(T a, T b) {
|
||||
if (b > a) // ensure always a < b
|
||||
std::swap(a, b);
|
||||
|
||||
while (b != 0) {
|
||||
T tmp = b;
|
||||
b = a % b;
|
||||
a = tmp;
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief helper function to perform vector multiplication with encryption
|
||||
* or decryption matrix
|
||||
*
|
||||
* @param vector vector to multiply
|
||||
* @param key encryption or decryption key matrix
|
||||
* @return corresponding encrypted or decrypted text
|
||||
*/
|
||||
static const std::valarray<uint8_t> mat_mul(
|
||||
const std::valarray<uint8_t> &vector, const matrix<int> &key) {
|
||||
std::valarray<uint8_t> out(vector); // make a copy
|
||||
|
||||
for (size_t i = 0; i < key.size(); i++) {
|
||||
int tmp = 0;
|
||||
for (size_t j = 0; j < vector.size(); j++) {
|
||||
tmp += key[i][j] * vector[j];
|
||||
}
|
||||
out[i] = static_cast<uint8_t>(tmp % STRKEY.length());
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convenience function to perform block cipher operations. The
|
||||
* operations are identical for both encryption and decryption.
|
||||
*
|
||||
* @param text input text to encrypt or decrypt
|
||||
* @param key key for encryption or decryption
|
||||
* @return encrypted/decrypted output
|
||||
*/
|
||||
static const std::string codec(const std::string &text,
|
||||
const matrix<int> &key) {
|
||||
size_t text_len = text.length();
|
||||
size_t key_len = key.size();
|
||||
|
||||
// length of output string must be a multiple of key_len
|
||||
// create output string and initialize with '\0' character
|
||||
size_t L2 = text_len % key_len == 0
|
||||
? text_len
|
||||
: text_len + key_len - (text_len % key_len);
|
||||
std::string coded_text(L2, '\0');
|
||||
|
||||
// temporary array for batch processing
|
||||
std::valarray<uint8_t> batch_int(key_len);
|
||||
for (size_t i = 0; i < L2 - key_len + 1; i += key_len) {
|
||||
for (size_t j = 0; j < key_len; j++) {
|
||||
batch_int[j] = static_cast<uint8_t>(
|
||||
STRKEY.find(text[i + j])); // get index of character in key
|
||||
}
|
||||
|
||||
batch_int = mat_mul(batch_int, key);
|
||||
|
||||
for (size_t j = 0; j < key_len; j++) {
|
||||
coded_text[i + j] =
|
||||
STRKEY[batch_int[j]]; // get character at key
|
||||
}
|
||||
}
|
||||
|
||||
return coded_text;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get matrix inverse using Row-transformations. Given matrix must
|
||||
* be a square and non-singular.
|
||||
* \returns inverse matrix
|
||||
**/
|
||||
template <typename T>
|
||||
static matrix<double> get_inverse(matrix<T> const &A) {
|
||||
// Assuming A is square matrix
|
||||
size_t N = A.size();
|
||||
|
||||
matrix<double> inverse(N, std::valarray<double>(N));
|
||||
for (size_t row = 0; row < N; row++) {
|
||||
for (size_t col = 0; col < N; col++) {
|
||||
// create identity matrix
|
||||
inverse[row][col] = (row == col) ? 1.f : 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
if (A.size() != A[0].size()) {
|
||||
std::cerr << "A must be a square matrix!" << std::endl;
|
||||
return inverse;
|
||||
}
|
||||
|
||||
// preallocate a temporary matrix identical to A
|
||||
matrix<double> temp(N, std::valarray<double>(N));
|
||||
for (size_t row = 0; row < N; row++) {
|
||||
for (size_t col = 0; col < N; col++)
|
||||
temp[row][col] = static_cast<double>(A[row][col]);
|
||||
}
|
||||
|
||||
// start transformations
|
||||
for (size_t row = 0; row < N; row++) {
|
||||
for (size_t row2 = row; row2 < N && temp[row][row] == 0; row2++) {
|
||||
// this to ensure diagonal elements are not 0
|
||||
temp[row] = temp[row] + temp[row2];
|
||||
inverse[row] = inverse[row] + inverse[row2];
|
||||
}
|
||||
|
||||
for (size_t col2 = row; col2 < N && temp[row][row] == 0; col2++) {
|
||||
// this to further ensure diagonal elements are not 0
|
||||
for (size_t row2 = 0; row2 < N; row2++) {
|
||||
temp[row2][row] = temp[row2][row] + temp[row2][col2];
|
||||
inverse[row2][row] =
|
||||
inverse[row2][row] + inverse[row2][col2];
|
||||
}
|
||||
}
|
||||
|
||||
if (temp[row][row] == 0) {
|
||||
// Probably a low-rank matrix and hence singular
|
||||
std::cerr << "Low-rank matrix, no inverse!" << std::endl;
|
||||
return inverse;
|
||||
}
|
||||
|
||||
// set diagonal to 1
|
||||
double divisor = temp[row][row];
|
||||
temp[row] = temp[row] / divisor;
|
||||
inverse[row] = inverse[row] / divisor;
|
||||
// Row transformations
|
||||
for (size_t row2 = 0; row2 < N; row2++) {
|
||||
if (row2 == row)
|
||||
continue;
|
||||
double factor = temp[row2][row];
|
||||
temp[row2] = temp[row2] - factor * temp[row];
|
||||
inverse[row2] = inverse[row2] - factor * inverse[row];
|
||||
}
|
||||
}
|
||||
|
||||
return inverse;
|
||||
}
|
||||
|
||||
static int modulo(int a, int b) {
|
||||
int ret = a % b;
|
||||
if (ret < 0)
|
||||
ret += b;
|
||||
return ret;
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Generate encryption matrix of a given size. Larger size matrices
|
||||
* are difficult to generate but provide more security.
|
||||
*
|
||||
* @param size size of matrix (typically \f$\text{size}\le10\f$)
|
||||
* @return Encryption martix
|
||||
*/
|
||||
static matrix<int> generate_encryption_key(size_t size) {
|
||||
matrix<int> encrypt_key(size, std::valarray<int>(size));
|
||||
int mat_determinant = -1; // because matrix has only ints, the
|
||||
// determinant will also be an int
|
||||
|
||||
int L = static_cast<int>(STRKEY.length());
|
||||
|
||||
double dd;
|
||||
do {
|
||||
dd = rand_range(&encrypt_key, 0, L);
|
||||
mat_determinant = static_cast<int>(dd);
|
||||
|
||||
if (mat_determinant < 0)
|
||||
mat_determinant = (mat_determinant % L) + L;
|
||||
} while (dd <= 0.1 || // while singular or ill-defined
|
||||
!std::isfinite(dd) || // while determinant is not finite
|
||||
gcd(mat_determinant, L) != 1); // while no common factors
|
||||
// std::cout <<
|
||||
|
||||
return encrypt_key;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generate decryption matrix from an encryption matrix key.
|
||||
*
|
||||
* @param encrypt_key encryption key for which to create a decrypt key
|
||||
* @return Decryption martix
|
||||
*/
|
||||
static matrix<int> generate_decryption_key(matrix<int> const &encrypt_key) {
|
||||
size_t size = encrypt_key.size();
|
||||
int L = static_cast<int>(STRKEY.length());
|
||||
|
||||
matrix<int> decrypt_key(size, std::valarray<int>(size));
|
||||
int det_encrypt = static_cast<int>(determinant_lu(encrypt_key));
|
||||
|
||||
int mat_determinant = det_encrypt < 0 ? det_encrypt % L : det_encrypt;
|
||||
|
||||
matrix<double> tmp_inverse = get_inverse(encrypt_key);
|
||||
double d2 = determinant_lu(decrypt_key);
|
||||
|
||||
// find co-prime factor for inversion
|
||||
int det_inv = -1;
|
||||
for (int i = 0; i < L; i++) {
|
||||
if (modulo(mat_determinant * i, L) == 1) {
|
||||
det_inv = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (det_inv == -1) {
|
||||
std::cerr << "Could not find a co-prime for inversion\n";
|
||||
std::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
mat_determinant = det_inv * det_encrypt;
|
||||
|
||||
// perform modular inverse of encryption matrix
|
||||
int i;
|
||||
#ifdef _OPENMP
|
||||
#pragma parallel omp for private(i)
|
||||
#endif
|
||||
for (i = 0; i < size; i++) {
|
||||
for (int j = 0; j < size; j++) {
|
||||
int temp = std::round(tmp_inverse[i][j] * mat_determinant);
|
||||
decrypt_key[i][j] = modulo(temp, L);
|
||||
}
|
||||
}
|
||||
return decrypt_key;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generate encryption and decryption key pair
|
||||
*
|
||||
* @param size size of matrix key (typically \f$\text{size}\le10\f$)
|
||||
* @return std::pair<matrix<int>, matrix<int>> encryption and decryption
|
||||
* keys as a pair
|
||||
*/
|
||||
static std::pair<matrix<int>, matrix<int>> generate_keys(size_t size) {
|
||||
matrix<int> encrypt_key = generate_encryption_key(size);
|
||||
matrix<int> decrypt_key = generate_decryption_key(encrypt_key);
|
||||
double det2 = determinant_lu(decrypt_key);
|
||||
while (det2 < 0.1) {
|
||||
encrypt_key = generate_encryption_key(size);
|
||||
decrypt_key = generate_decryption_key(encrypt_key);
|
||||
det2 = determinant_lu(decrypt_key);
|
||||
}
|
||||
return std::make_pair(encrypt_key, decrypt_key);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encrypt a given text using a given key
|
||||
*
|
||||
* @param text string to encrypt
|
||||
* @param encrypt_key key for encryption
|
||||
* @return encrypted text
|
||||
*/
|
||||
static const std::string encrypt_text(const std::string &text,
|
||||
const matrix<int> &encrypt_key) {
|
||||
return codec(text, encrypt_key);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Decrypt a given text using a given key
|
||||
*
|
||||
* @param text string to decrypt
|
||||
* @param decrypt_key key for decryption
|
||||
* @return decrypted text
|
||||
*/
|
||||
static const std::string decrypt_text(const std::string &text,
|
||||
const matrix<int> &decrypt_key) {
|
||||
return codec(text, decrypt_key);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ciphers
|
||||
|
||||
/** Main function */
|
||||
int main() {
|
||||
std::srand(std::time(nullptr));
|
||||
|
||||
std::cout << "Key dictionary: (" << ciphers::STRKEY.length() << ")\n\t"
|
||||
<< ciphers::STRKEY << "\n";
|
||||
|
||||
std::string text = "This is a simple text with numb3r5 and exclamat!0n.";
|
||||
// std::string text = "Hello world!";
|
||||
std::cout << "Original text:\n\t" << text << std::endl;
|
||||
|
||||
std::pair<matrix<int>, matrix<int>> p =
|
||||
ciphers::HillCipher::generate_keys(5);
|
||||
matrix<int> ekey = p.first;
|
||||
matrix<int> dkey = p.second;
|
||||
// matrix<int> ekey = {{22, 28, 25}, {5, 26, 15}, {14, 18, 9}};
|
||||
// std::cout << "Encryption key: \n" << ekey;
|
||||
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
|
||||
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
|
||||
|
||||
// matrix<int> dkey = ciphers::HillCipher::generate_decryption_key(ekey);
|
||||
// std::cout << "Decryption key: \n" << dkey;
|
||||
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
|
||||
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
|
||||
|
||||
assert(txt_back == text);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user