mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #878 from kvedala/brents-method
feat: Brent's method to find extrema
This commit is contained in:
commit
db9fa4dd40
@ -131,6 +131,7 @@
|
||||
|
||||
## Numerical Methods
|
||||
* [Bisection Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/bisection_method.cpp)
|
||||
* [Brent Method Extrema](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/brent_method_extrema.cpp)
|
||||
* [Durand Kerner Roots](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/durand_kerner_roots.cpp)
|
||||
* [False Position](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/false_position.cpp)
|
||||
* [Gaussian Elimination](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/gaussian_elimination.cpp)
|
||||
|
215
numerical_methods/brent_method_extrema.cpp
Normal file
215
numerical_methods/brent_method_extrema.cpp
Normal file
@ -0,0 +1,215 @@
|
||||
/**
|
||||
* \file
|
||||
* \brief Find real extrema of a univariate real function in a given interval
|
||||
* using [Brent's method](https://en.wikipedia.org/wiki/Brent%27s_method).
|
||||
*
|
||||
* Refer the algorithm discoverer's publication
|
||||
* [online](https://maths-people.anu.edu.au/~brent/pd/rpb011i.pdf) and also
|
||||
* associated book:
|
||||
* > R. P. Brent, Algorithms for Minimization without
|
||||
* > Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, 1973
|
||||
*
|
||||
* \see golden_search_extrema.cpp
|
||||
*
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
#define _USE_MATH_DEFINES ///< required for MS Visual C++
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
|
||||
#define EPSILON \
|
||||
std::sqrt( \
|
||||
std::numeric_limits<double>::epsilon()) ///< system accuracy limit
|
||||
|
||||
/**
|
||||
* @brief Get the real root of a function in the given interval.
|
||||
*
|
||||
* @param f function to get root for
|
||||
* @param lim_a lower limit of search window
|
||||
* @param lim_b upper limit of search window
|
||||
* @return root found in the interval
|
||||
*/
|
||||
double get_minima(const std::function<double(double)> &f, double lim_a,
|
||||
double lim_b) {
|
||||
uint32_t iters = 0;
|
||||
|
||||
if (lim_a > lim_b) {
|
||||
std::swap(lim_a, lim_b);
|
||||
} else if (std::abs(lim_a - lim_b) <= EPSILON) {
|
||||
std::cerr << "Search range must be greater than " << EPSILON << "\n";
|
||||
return lim_a;
|
||||
}
|
||||
|
||||
// golden ratio value
|
||||
const double M_GOLDEN_RATIO = (3.f - std::sqrt(5.f)) / 2.f;
|
||||
|
||||
double v = lim_a + M_GOLDEN_RATIO * (lim_b - lim_a);
|
||||
double u, w = v, x = v;
|
||||
double fu, fv = f(v);
|
||||
double fw = fv, fx = fv;
|
||||
|
||||
double mid_point = (lim_a + lim_b) / 2.f;
|
||||
double p = 0, q = 0, r = 0;
|
||||
|
||||
double d, e = 0;
|
||||
double tolerance, tolerance2;
|
||||
|
||||
do {
|
||||
mid_point = (lim_a + lim_b) / 2.f;
|
||||
tolerance = EPSILON * std::abs(x);
|
||||
tolerance2 = 2 * tolerance;
|
||||
|
||||
if (std::abs(e) > tolerance2) {
|
||||
// fit parabola
|
||||
r = (x - w) * (fx - fv);
|
||||
q = (x - v) * (fx - fw);
|
||||
p = (x - v) * q - (x - w) * r;
|
||||
q = 2.f * (q - r);
|
||||
if (q > 0)
|
||||
p = -p;
|
||||
else
|
||||
q = -q;
|
||||
r = e;
|
||||
e = d;
|
||||
}
|
||||
|
||||
if (std::abs(p) < std::abs(0.5 * q * r) && p < q * (lim_b - x)) {
|
||||
// parabolic interpolation step
|
||||
d = p / q;
|
||||
u = x + d;
|
||||
if (u - lim_a < tolerance2 || lim_b - u < tolerance2)
|
||||
d = x < mid_point ? tolerance : -tolerance;
|
||||
} else {
|
||||
// golden section interpolation step
|
||||
e = (x < mid_point ? lim_b : lim_a) - x;
|
||||
d = M_GOLDEN_RATIO * e;
|
||||
}
|
||||
|
||||
// evaluate not too close to x
|
||||
if (std::abs(d) >= tolerance)
|
||||
u = d;
|
||||
else if (d > 0)
|
||||
u = tolerance;
|
||||
else
|
||||
u = -tolerance;
|
||||
u += x;
|
||||
fu = f(u);
|
||||
|
||||
// update variables
|
||||
if (fu <= fx) {
|
||||
if (u < x)
|
||||
lim_b = x;
|
||||
else
|
||||
lim_a = x;
|
||||
v = w;
|
||||
fv = fw;
|
||||
w = x;
|
||||
fw = fx;
|
||||
x = u;
|
||||
fx = fu;
|
||||
} else {
|
||||
if (u < x)
|
||||
lim_a = u;
|
||||
else
|
||||
lim_b = u;
|
||||
if (fu <= fw || x == w) {
|
||||
v = w;
|
||||
fv = fw;
|
||||
w = u;
|
||||
fw = fu;
|
||||
} else if (fu <= fv || v == x || v == w) {
|
||||
v = u;
|
||||
fv = fu;
|
||||
}
|
||||
}
|
||||
|
||||
iters++;
|
||||
} while (std::abs(x - mid_point) > (tolerance - (lim_b - lim_a) / 2.f));
|
||||
|
||||
std::cout << " (iters: " << iters << ") ";
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test function to find root for the function
|
||||
* \f$f(x)= (x-2)^2\f$
|
||||
* in the interval \f$[1,5]\f$
|
||||
* \n Expected result = 2
|
||||
*/
|
||||
void test1() {
|
||||
// define the function to minimize as a lambda function
|
||||
std::function<double(double)> f1 = [](double x) {
|
||||
return (x - 2) * (x - 2);
|
||||
};
|
||||
|
||||
std::cout << "Test 1.... ";
|
||||
|
||||
double minima = get_minima(f1, -1, 5);
|
||||
|
||||
std::cout << minima << "...";
|
||||
|
||||
assert(std::abs(minima - 2) < EPSILON);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test function to find root for the function
|
||||
* \f$f(x)= x^{\frac{1}{x}}\f$
|
||||
* in the interval \f$[-2,10]\f$
|
||||
* \n Expected result: \f$e\approx 2.71828182845904509\f$
|
||||
*/
|
||||
void test2() {
|
||||
// define the function to maximize as a lambda function
|
||||
// since we are maximixing, we negated the function return value
|
||||
std::function<double(double)> func = [](double x) {
|
||||
return -std::pow(x, 1.f / x);
|
||||
};
|
||||
|
||||
std::cout << "Test 2.... ";
|
||||
|
||||
double minima = get_minima(func, -2, 5);
|
||||
|
||||
std::cout << minima << " (" << M_E << ")...";
|
||||
|
||||
assert(std::abs(minima - M_E) < EPSILON);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test function to find *maxima* for the function
|
||||
* \f$f(x)= \cos x\f$
|
||||
* in the interval \f$[0,12]\f$
|
||||
* \n Expected result: \f$\pi\approx 3.14159265358979312\f$
|
||||
*/
|
||||
void test3() {
|
||||
// define the function to maximize as a lambda function
|
||||
// since we are maximixing, we negated the function return value
|
||||
std::function<double(double)> func = [](double x) { return std::cos(x); };
|
||||
|
||||
std::cout << "Test 3.... ";
|
||||
|
||||
double minima = get_minima(func, -4, 12);
|
||||
|
||||
std::cout << minima << " (" << M_PI << ")...";
|
||||
|
||||
assert(std::abs(minima - M_PI) < EPSILON);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main() {
|
||||
std::cout.precision(18);
|
||||
|
||||
std::cout << "Computations performed with machine epsilon: " << EPSILON
|
||||
<< "\n";
|
||||
|
||||
test1();
|
||||
test2();
|
||||
test3();
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user