diff --git a/numerical_methods/brent_method_extrema.cpp b/numerical_methods/brent_method_extrema.cpp index 654a69451..399be5b38 100644 --- a/numerical_methods/brent_method_extrema.cpp +++ b/numerical_methods/brent_method_extrema.cpp @@ -180,14 +180,13 @@ void test2() { } /** - * @brief Test function to find *maxima* for the function + * @brief Test function to find *minima* for the function * \f$f(x)= \cos x\f$ * in the interval \f$[0,12]\f$ * \n Expected result: \f$\pi\approx 3.14159265358979312\f$ */ void test3() { - // define the function to maximize as a lambda function - // since we are maximixing, we negated the function return value + // define the function to minimize as a lambda function std::function func = [](double x) { return std::cos(x); }; std::cout << "Test 3.... "; diff --git a/numerical_methods/durand_kerner_roots.cpp b/numerical_methods/durand_kerner_roots.cpp index 9bf0619b8..23419d1ed 100644 --- a/numerical_methods/durand_kerner_roots.cpp +++ b/numerical_methods/durand_kerner_roots.cpp @@ -212,7 +212,7 @@ void test1() { std::complex(0., -2.) // known expected roots }; - /* initialize root approximations with random values */ + /* Initialize root approximations with random values */ for (int n = 0; n < roots.size(); n++) { roots[n] = std::complex(std::rand() % 100, std::rand() % 100); roots[n] -= 50.f;