mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
fix, test: simplification and tests for number_of_positive_divisors (#975)
* fix, test: simplification and tests for number_of_positive_divisors * Further refactor and documentation of number_of_positive_divisors * Update the comments. * Update the LaTeX documentation.
This commit is contained in:
parent
d8affb52e3
commit
dcf5fa4241
@ -1,74 +1,92 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief C++ Program to calculate number of divisors
|
||||
* @brief C++ Program to calculate the number of positive divisors
|
||||
*
|
||||
* This algorithm use the prime factorization approach.
|
||||
* Any number can be written in multiplication of its prime factors.
|
||||
* <br/>Let N = P1^E1 * P2^E2 ... Pk^Ek
|
||||
* <br/>Therefore. number-of-divisors(N) = (E1+1) * (E2+1) ... (Ek+1).
|
||||
* <br/>Where P1, P2 ... Pk are prime factors and E1, E2 ... Ek are exponents
|
||||
respectively.
|
||||
* This algorithm uses the prime factorization approach.
|
||||
* Any positive integer can be written as a product of its prime factors.
|
||||
* <br/>Let \f$N = p_1^{e_1} \times p_2^{e_2} \times\cdots\times p_k^{e_k}\f$
|
||||
* where \f$p_1,\, p_2,\, \dots,\, p_k\f$ are distinct prime factors of \f$N\f$ and
|
||||
* \f$e_1,\, e_2,\, \dots,\, e_k\f$ are respective positive integer exponents.
|
||||
* <br/>Each positive divisor of \f$N\f$ is in the form
|
||||
* \f$p_1^{g_1}\times p_2^{g_2}\times\cdots\times p_k^{g_k}\f$
|
||||
* where \f$0\le g_i\le e_i\f$ are integers for all \f$1\le i\le k\f$.
|
||||
* <br/>Finally, there are \f$(e_1+1) \times (e_2+1)\times\cdots\times (e_k+1)\f$
|
||||
* positive divisors of \f$N\f$ since we can choose every \f$g_i\f$
|
||||
* independently.
|
||||
*
|
||||
* Example:-
|
||||
* <br/>N = 36
|
||||
* <br/>36 = (3^2 * 2^2)
|
||||
* <br/>number_of_positive_divisors(36) = (2+1) * (2+1) = 9.
|
||||
* Example:
|
||||
* <br/>\f$N = 36 = (3^2 \cdot 2^2)\f$
|
||||
* <br/>\f$\mbox{number_of_positive_divisors}(36) = (2+1) \cdot (2+1) = 9\f$.
|
||||
* <br/>list of positive divisors of 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36.
|
||||
*
|
||||
* Similarly if N is -36 at that time number of positive divisors remain same.
|
||||
*
|
||||
* Example:-
|
||||
* <br/>N = -36
|
||||
* <br/>-36 = -1 * (3^2 * 2^2)
|
||||
* <br/>number_of_positive_divisors(-36) = (2+1) * (2+1) = 9.
|
||||
* <br/>list of positive divisors of -36 = 1, 2, 3, 4, 6, 9, 12, 18, 36.
|
||||
*
|
||||
* Similarly, for N = -36 the number of positive divisors remain same.
|
||||
**/
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
/**
|
||||
* Algorithm
|
||||
* Function to compute the number of positive divisors.
|
||||
* @param n number to compute divisors for
|
||||
* @returns number of positive divisors of n (or 1 if n = 0)
|
||||
*/
|
||||
int number_of_positive_divisors(int n) {
|
||||
std::vector<int> prime_exponent_count;
|
||||
if (n < 0) {
|
||||
n = -n; // take the absolute value of n
|
||||
}
|
||||
|
||||
int number_of_divisors = 1;
|
||||
|
||||
for (int i = 2; i * i <= n; i++) {
|
||||
int prime_count = 0;
|
||||
// This part is doing the prime factorization.
|
||||
// Note that we cannot find a composite divisor of n unless we would
|
||||
// already previously find the corresponding prime divisor and dvided
|
||||
// n by that prime. Therefore, all the divisors found here will
|
||||
// actually be primes.
|
||||
// The loop terminates early when it is left with a number n which
|
||||
// does not have a divisor smaller or equal to sqrt(n) - that means
|
||||
// the remaining number is a prime itself.
|
||||
int prime_exponent = 0;
|
||||
while (n % i == 0) {
|
||||
prime_count += 1;
|
||||
// Repeatedly divide n by the prime divisor n to compute
|
||||
// the exponent (e_i in the algorithm description).
|
||||
prime_exponent++;
|
||||
n /= i;
|
||||
}
|
||||
if (prime_count != 0) {
|
||||
prime_exponent_count.push_back(prime_count);
|
||||
}
|
||||
number_of_divisors *= prime_exponent + 1;
|
||||
}
|
||||
if (n > 1) {
|
||||
prime_exponent_count.push_back(1);
|
||||
// In case the remaining number n is a prime number itself
|
||||
// (essentially p_k^1) the final answer is also multiplied by (e_k+1).
|
||||
number_of_divisors *= 2;
|
||||
}
|
||||
|
||||
int divisors_count = 1;
|
||||
|
||||
for (int i = 0; i < prime_exponent_count.size(); i++) {
|
||||
divisors_count = divisors_count * (prime_exponent_count[i] + 1);
|
||||
return number_of_divisors;
|
||||
}
|
||||
|
||||
return divisors_count;
|
||||
/**
|
||||
* Test implementations
|
||||
*/
|
||||
void tests() {
|
||||
assert(number_of_positive_divisors(36) == 9);
|
||||
assert(number_of_positive_divisors(-36) == 9);
|
||||
assert(number_of_positive_divisors(1) == 1);
|
||||
assert(number_of_positive_divisors(2011) == 2); // 2011 is a prime
|
||||
assert(number_of_positive_divisors(756) == 24); // 756 = 2^2 * 3^3 * 7
|
||||
}
|
||||
|
||||
/**
|
||||
* Main function
|
||||
*/
|
||||
int main() {
|
||||
tests();
|
||||
int n;
|
||||
std::cin >> n;
|
||||
if (n < 0) {
|
||||
n = -n;
|
||||
}
|
||||
if (n == 0) {
|
||||
std::cout << "All non-zero numbers are divisors of 0 !" << std::endl;
|
||||
} else {
|
||||
std::cout << "Number of positive divisors is : ";
|
||||
std::cout << number_of_positive_divisors(n) << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user