Refactor lowest comomon ancestor. (#980)

* Refactor lowest comomon ancestor.

* Fix linter warnings.

* Address comments and linter warnings.

* Added Kaprekar number implementation

* updating DIRECTORY.md

* Added Collatz Conjecture implementation

* updating DIRECTORY.md

* Added Ugly Numbers implementation

* updating DIRECTORY.md

* Add lowest common ancestor to the graph namespace.

* updating DIRECTORY.md

* static tests function

* Revert ugly number kaprekar and collatz.

Co-authored-by: Deepak Vijay Agrawal <64848982+DebugAgrawal@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Filip Hlasek 2020-08-14 09:35:11 -07:00 committed by GitHub
parent 426d6da4b6
commit def8f4937e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 260 additions and 100 deletions

View File

@ -84,7 +84,7 @@
* [Hamiltons Cycle](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/hamiltons_cycle.cpp) * [Hamiltons Cycle](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/hamiltons_cycle.cpp)
* [Kosaraju](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/kosaraju.cpp) * [Kosaraju](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/kosaraju.cpp)
* [Kruskal](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/kruskal.cpp) * [Kruskal](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/kruskal.cpp)
* [Lca](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/lca.cpp) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/lowest_common_ancestor.cpp)
* [Max Flow With Ford Fulkerson And Edmond Karp Algo](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/max_flow_with_ford_fulkerson_and_edmond_karp_algo.cpp) * [Max Flow With Ford Fulkerson And Edmond Karp Algo](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/max_flow_with_ford_fulkerson_and_edmond_karp_algo.cpp)
* [Prim](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/prim.cpp) * [Prim](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/prim.cpp)
* [Topological Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/topological_sort.cpp) * [Topological Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/topological_sort.cpp)

View File

@ -1,99 +0,0 @@
//#include<bits/stdc++.h>
#include <iostream>
using namespace std;
// Find the lowest common ancestor using binary lifting in O(nlogn)
// Zero based indexing
// Resource : https://cp-algorithms.com/graph/lca_binary_lifting.html
const int N = 1005;
const int LG = log2(N) + 1;
struct lca {
int n;
vector<int> adj[N]; // Graph
int up[LG][N]; // build this table
int level[N]; // get the levels of all of them
lca(int n_) : n(n_) {
memset(up, -1, sizeof(up));
memset(level, 0, sizeof(level));
for (int i = 0; i < n - 1; ++i) {
int a, b;
cin >> a >> b;
a--;
b--;
adj[a].push_back(b);
adj[b].push_back(a);
}
level[0] = 0;
dfs(0, -1);
build();
}
void verify() {
for (int i = 0; i < n; ++i) {
cout << i << " : level: " << level[i] << endl;
}
cout << endl;
for (int i = 0; i < LG; ++i) {
cout << "Power:" << i << ": ";
for (int j = 0; j < n; ++j) {
cout << up[i][j] << " ";
}
cout << endl;
}
}
void build() {
for (int i = 1; i < LG; ++i) {
for (int j = 0; j < n; ++j) {
if (up[i - 1][j] != -1) {
up[i][j] = up[i - 1][up[i - 1][j]];
}
}
}
}
void dfs(int node, int par) {
up[0][node] = par;
for (auto i : adj[node]) {
if (i != par) {
level[i] = level[node] + 1;
dfs(i, node);
}
}
}
int query(int u, int v) {
u--;
v--;
if (level[v] > level[u]) {
swap(u, v);
}
// u is at the bottom.
int dist = level[u] - level[v];
// Go up this much distance
for (int i = LG - 1; i >= 0; --i) {
if (dist & (1 << i)) {
u = up[i][u];
}
}
if (u == v) {
return u;
}
assert(level[u] == level[v]);
for (int i = LG - 1; i >= 0; --i) {
if (up[i][u] != up[i][v]) {
u = up[i][u];
v = up[i][v];
}
}
assert(up[0][u] == up[0][v]);
return up[0][u];
}
};
int main() {
int n; // number of nodes in the tree.
lca l(n); // will take the input in the format given
// n-1 edges of the form
// a b
// Use verify function to see.
}

View File

@ -0,0 +1,259 @@
/**
*
* \file
*
* \brief Data structure for finding the lowest common ancestor
* of two vertices in a rooted tree using binary lifting.
*
* \details
* Algorithm: https://cp-algorithms.com/graph/lca_binary_lifting.html
*
* Complexity:
* - Precomputation: \f$O(N \log N)\f$ where \f$N\f$ is the number of vertices in the tree
* - Query: \f$O(\log N)\f$
* - Space: \f$O(N \log N)\f$
*
* Example:
* <br/> Tree:
* <pre>
* _ 3 _
* / | \
* 1 6 4
* / | / \ \
* 7 5 2 8 0
* |
* 9
* </pre>
*
* <br/> lowest_common_ancestor(7, 4) = 3
* <br/> lowest_common_ancestor(9, 6) = 6
* <br/> lowest_common_ancestor(0, 0) = 0
* <br/> lowest_common_ancestor(8, 2) = 6
*
* The query is symmetrical, therefore
* lowest_common_ancestor(x, y) = lowest_common_ancestor(y, x)
*/
#include <iostream>
#include <utility>
#include <vector>
#include <queue>
#include <cassert>
/**
* \namespace graph
* \brief Graph algorithms
*/
namespace graph {
/**
* Class for representing a graph as an adjacency list.
* Its vertices are indexed 0, 1, ..., N - 1.
*/
class Graph {
public:
/**
* \brief Populate the adjacency list for each vertex in the graph.
* Assumes that evey edge is a pair of valid vertex indices.
*
* @param N number of vertices in the graph
* @param undirected_edges list of graph's undirected edges
*/
Graph(size_t N, const std::vector< std::pair<int, int> > &undirected_edges) {
neighbors.resize(N);
for (auto &edge : undirected_edges) {
neighbors[edge.first].push_back(edge.second);
neighbors[edge.second].push_back(edge.first);
}
}
/**
* Function to get the number of vertices in the graph
* @return the number of vertices in the graph.
*/
int number_of_vertices() const {
return neighbors.size();
}
/** \brief for each vertex it stores a list indicies of its neighbors */
std::vector< std::vector<int> > neighbors;
};
/**
* Representation of a rooted tree. For every vertex its parent is precalculated.
*/
class RootedTree : public Graph {
public:
/**
* \brief Constructs the tree by calculating parent for every vertex.
* Assumes a valid description of a tree is provided.
*
* @param undirected_edges list of graph's undirected edges
* @param root_ index of the root vertex
*/
RootedTree(const std::vector< std::pair<int, int> > &undirected_edges, int root_)
: Graph(undirected_edges.size() + 1, undirected_edges), root(root_) {
populate_parents();
}
/**
* \brief Stores parent of every vertex and for root its own index.
* The root is technically not its own parent, but it's very practical
* for the lowest common ancestor algorithm.
*/
std::vector<int> parent;
/** \brief Stores the distance from the root. */
std::vector<int> level;
/** \brief Index of the root vertex. */
int root;
protected:
/**
* \brief Calculate the parents for all the vertices in the tree.
* Implements the breadth first search algorithm starting from the root
* vertex searching the entire tree and labeling parents for all vertices.
* @returns none
*/
void populate_parents() {
// Initialize the vector with -1 which indicates the vertex
// wasn't yet visited.
parent = std::vector<int>(number_of_vertices(), -1);
level = std::vector<int>(number_of_vertices());
parent[root] = root;
level[root] = 0;
std::queue<int> queue_of_vertices;
queue_of_vertices.push(root);
while (!queue_of_vertices.empty()) {
int vertex = queue_of_vertices.front();
queue_of_vertices.pop();
for (int neighbor : neighbors[vertex]) {
// As long as the vertex was not yet visited.
if (parent[neighbor] == -1) {
parent[neighbor] = vertex;
level[neighbor] = level[vertex] + 1;
queue_of_vertices.push(neighbor);
}
}
}
}
};
/**
* A structure that holds a rooted tree and allow for effecient
* queries of the lowest common ancestor of two given vertices in the tree.
*/
class LowestCommonAncestor {
public:
/**
* \brief Stores the tree and precomputs "up lifts".
* @param tree_ rooted tree.
*/
explicit LowestCommonAncestor(const RootedTree& tree_) : tree(tree_) {
populate_up();
}
/**
* \brief Query the structure to find the lowest common ancestor.
* Assumes that the provided numbers are valid indices of vertices.
* Iterativelly modifies ("lifts") u an v until it finnds their lowest
* common ancestor.
* @param u index of one of the queried vertex
* @param v index of the other queried vertex
* @return index of the vertex which is the lowet common ancestor of u and v
*/
int lowest_common_ancestor(int u, int v) const {
// Ensure u is the deeper (higher level) of the two vertices
if (tree.level[v] > tree.level[u]) {
std::swap(u, v);
}
// "Lift" u to the same level as v.
int level_diff = tree.level[u] - tree.level[v];
for (int i = 0; (1 << i) <= level_diff; ++i) {
if (level_diff & (1 << i)) {
u = up[u][i];
}
}
assert(tree.level[u] == tree.level[v]);
if (u == v) {
return u;
}
// "Lift" u and v to their 2^i th ancestor if they are different
for (int i = static_cast<int>(up[u].size()) - 1; i >= 0; --i) {
if (up[u][i] != up[v][i]) {
u = up[u][i];
v = up[v][i];
}
}
// As we regressed u an v such that they cannot further be lifted so
// that their ancestor would be different, the only logical
// consequence is that their parent is the sought answer.
assert(up[u][0] == up[v][0]);
return up[u][0];
}
/* \brief reference to the rooted tree this structure allows to query */
const RootedTree& tree;
/**
* \brief for every vertex stores a list of its ancestors by powers of two
* For each vertex, the first element of the corresponding list contains
* the index of its parent. The i-th element of the list is an index of
* the (2^i)-th ancestor of the vertex.
*/
std::vector< std::vector<int> > up;
protected:
/**
* Populate the "up" structure. See above.
*/
void populate_up() {
up.resize(tree.number_of_vertices());
for (int vertex = 0; vertex < tree.number_of_vertices(); ++vertex) {
up[vertex].push_back(tree.parent[vertex]);
}
for (int level = 0; (1 << level) < tree.number_of_vertices(); ++level) {
for (int vertex = 0; vertex < tree.number_of_vertices(); ++vertex) {
// up[vertex][level + 1] = 2^(level + 1) th ancestor of vertex =
// = 2^level th ancestor of 2^level th ancestor of vertex =
// = 2^level th ancestor of up[vertex][level]
up[vertex].push_back(up[up[vertex][level]][level]);
}
}
}
};
} // namespace graph
/**
* Unit tests
* @rerturns none
*/
static void tests() {
/**
* _ 3 _
* / | \
* 1 6 4
* / | / \ \
* 7 5 2 8 0
* |
* 9
*/
std::vector< std::pair<int, int> > edges = {
{7, 1}, {1, 5}, {1, 3}, {3, 6}, {6, 2}, {2, 9}, {6, 8}, {4, 3}, {0, 4}
};
graph::RootedTree t(edges, 3);
graph::LowestCommonAncestor lca(t);
assert(lca.lowest_common_ancestor(7, 4) == 3);
assert(lca.lowest_common_ancestor(9, 6) == 6);
assert(lca.lowest_common_ancestor(0, 0) == 0);
assert(lca.lowest_common_ancestor(8, 2) == 6);
}
/** Main function */
int main() {
tests();
return 0;
}