mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
fix: CodeQL warnings (#1827)
* fix: CodeQL warnings * clang-format and clang-tidy fixes for4d357c46
* clang-format and clang-tidy fixes for72322fb7
* accept suggestion * clang-format and clang-tidy fixes for9a4dc07c
Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Ayaan Khan <ayaankhan98@gmail.com>
This commit is contained in:
parent
b98dcdfd08
commit
e64e3df18f
@ -462,7 +462,7 @@ class uint128_t {
|
||||
tmp <<= left;
|
||||
uint128_t quotient(0);
|
||||
uint128_t zero(0);
|
||||
while (left >= 0 && tmp2 >= p) {
|
||||
while (tmp2 >= p) {
|
||||
uint16_t shf = tmp2._lez() - tmp._lez();
|
||||
if (shf) {
|
||||
tmp >>= shf;
|
||||
|
@ -429,7 +429,7 @@ class uint256_t {
|
||||
tmp <<= left;
|
||||
uint256_t quotient(0);
|
||||
uint256_t zero(0);
|
||||
while (left >= 0 && tmp2 >= p) {
|
||||
while (tmp2 >= p) {
|
||||
uint16_t shf = tmp2._lez() - tmp._lez();
|
||||
if (shf) {
|
||||
tmp >>= shf;
|
||||
|
@ -121,12 +121,10 @@ void list::reverseList() {
|
||||
* @returns the top element of the list
|
||||
*/
|
||||
int32_t list::top() {
|
||||
try {
|
||||
if (!isEmpty()) {
|
||||
return head->val;
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "List is empty" << e.what() << '\n';
|
||||
} else {
|
||||
throw std::logic_error("List is empty");
|
||||
}
|
||||
}
|
||||
/**
|
||||
@ -134,16 +132,14 @@ int32_t list::top() {
|
||||
* @returns the last element of the list
|
||||
*/
|
||||
int32_t list::last() {
|
||||
try {
|
||||
if (!isEmpty()) {
|
||||
Node *t = head;
|
||||
while (t->next != nullptr) {
|
||||
t = t->next;
|
||||
}
|
||||
return t->val;
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "List is empty" << e.what() << '\n';
|
||||
} else {
|
||||
throw std::logic_error("List is empty");
|
||||
}
|
||||
}
|
||||
/**
|
||||
@ -164,7 +160,7 @@ int32_t list::traverse(int index) {
|
||||
|
||||
/* if we get to this line,the caller was asking for a non-existent element
|
||||
so we assert fail */
|
||||
assert(0);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
} // namespace linked_list
|
||||
|
@ -10,10 +10,9 @@
|
||||
*/
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <cmath>
|
||||
#include <iostream> /// for IO operations
|
||||
|
||||
#include "math.h"
|
||||
|
||||
/**
|
||||
* @namespace numerical_methods
|
||||
* @brief Numerical algorithms/methods
|
||||
|
@ -37,6 +37,7 @@
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <cmath> /// for math functions
|
||||
#include <cmath>
|
||||
#include <cstdint> /// for integer allocation
|
||||
#include <cstdlib> /// for std::atof
|
||||
#include <functional> /// for std::function
|
||||
@ -64,13 +65,13 @@ namespace simpson_method {
|
||||
* @returns the result of the integration
|
||||
*/
|
||||
double evaluate_by_simpson(std::int32_t N, double h, double a,
|
||||
std::function<double(double)> func) {
|
||||
const std::function<double(double)>& func) {
|
||||
std::map<std::int32_t, double>
|
||||
data_table; // Contains the data points. key: i, value: f(xi)
|
||||
double xi = a; // Initialize xi to the starting point x0 = a
|
||||
|
||||
// Create the data table
|
||||
double temp;
|
||||
double temp = NAN;
|
||||
for (std::int32_t i = 0; i <= N; i++) {
|
||||
temp = func(xi);
|
||||
data_table.insert(
|
||||
@ -82,13 +83,14 @@ double evaluate_by_simpson(std::int32_t N, double h, double a,
|
||||
// Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)
|
||||
double evaluate_integral = 0;
|
||||
for (std::int32_t i = 0; i <= N; i++) {
|
||||
if (i == 0 || i == N)
|
||||
if (i == 0 || i == N) {
|
||||
evaluate_integral += data_table.at(i);
|
||||
else if (i % 2 == 1)
|
||||
} else if (i % 2 == 1) {
|
||||
evaluate_integral += 4 * data_table.at(i);
|
||||
else
|
||||
} else {
|
||||
evaluate_integral += 2 * data_table.at(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply by the coefficient h/3
|
||||
evaluate_integral *= h / 3;
|
||||
@ -170,7 +172,7 @@ int main(int argc, char** argv) {
|
||||
/// interval. MUST BE EVEN
|
||||
double a = 1, b = 3; /// Starting and ending point of the integration in
|
||||
/// the real axis
|
||||
double h; /// Step, calculated by a, b and N
|
||||
double h = NAN; /// Step, calculated by a, b and N
|
||||
|
||||
bool used_argv_parameters =
|
||||
false; // If argv parameters are used then the assert must be omitted
|
||||
@ -180,18 +182,20 @@ int main(int argc, char** argv) {
|
||||
// displaying messages)
|
||||
if (argc == 4) {
|
||||
N = std::atoi(argv[1]);
|
||||
a = (double)std::atof(argv[2]);
|
||||
b = (double)std::atof(argv[3]);
|
||||
a = std::atof(argv[2]);
|
||||
b = std::atof(argv[3]);
|
||||
// Check if a<b else abort
|
||||
assert(a < b && "a has to be less than b");
|
||||
assert(N > 0 && "N has to be > 0");
|
||||
if (N < 16 || a != 1 || b != 3)
|
||||
if (N < 16 || a != 1 || b != 3) {
|
||||
used_argv_parameters = true;
|
||||
}
|
||||
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
|
||||
<< std::endl;
|
||||
} else
|
||||
} else {
|
||||
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// Find the step
|
||||
h = (b - a) / N;
|
||||
|
@ -6,7 +6,8 @@
|
||||
* discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).
|
||||
* @details
|
||||
* This
|
||||
* algorithm has application in use case scenario where a user wants to find points of a
|
||||
* algorithm has application in use case scenario where a user wants to find
|
||||
points of a
|
||||
* function
|
||||
* in a short time by just using the coefficients of the polynomial
|
||||
* function.
|
||||
@ -56,9 +57,10 @@ std::complex<double> *FastFourierTransform(std::complex<double> *p, uint8_t n) {
|
||||
if (j % 2 == 0) {
|
||||
pe[k1++] = p[j]; /// Assigning values of even Coefficients
|
||||
|
||||
} else
|
||||
} else {
|
||||
po[k2++] = p[j]; /// Assigning value of odd Coefficients
|
||||
}
|
||||
}
|
||||
|
||||
std::complex<double> *ye =
|
||||
FastFourierTransform(pe, n / 2); /// Recursive Call
|
||||
@ -81,10 +83,8 @@ std::complex<double> *FastFourierTransform(std::complex<double> *p, uint8_t n) {
|
||||
}
|
||||
|
||||
if (n != 2) {
|
||||
|
||||
delete[] pe;
|
||||
delete[] po;
|
||||
|
||||
}
|
||||
|
||||
delete[] ye; /// Deleting dynamic array ye
|
||||
@ -123,9 +123,11 @@ static void test() {
|
||||
{10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2
|
||||
|
||||
std::complex<double> *o1 = numerical_methods::FastFourierTransform(t1, n1);
|
||||
std::complex<double> *t3=o1; /// Temporary variable used to delete memory location of o1
|
||||
std::complex<double> *t3 =
|
||||
o1; /// Temporary variable used to delete memory location of o1
|
||||
std::complex<double> *o2 = numerical_methods::FastFourierTransform(t2, n2);
|
||||
std::complex<double> *t4=o2; /// Temporary variable used to delete memory location of o2
|
||||
std::complex<double> *t4 =
|
||||
o2; /// Temporary variable used to delete memory location of o2
|
||||
for (uint8_t i = 0; i < n1; i++) {
|
||||
assert((r1[i].real() - o1->real() < 0.000000000001) &&
|
||||
(r1[i].imag() - o1->imag() <
|
||||
@ -142,7 +144,6 @@ static void test() {
|
||||
o2++;
|
||||
}
|
||||
|
||||
|
||||
delete[] t1;
|
||||
delete[] t2;
|
||||
delete[] t3;
|
||||
|
@ -4,10 +4,10 @@
|
||||
* (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/)
|
||||
* is an algorithm that computes the inverse fourier transform.
|
||||
* @details
|
||||
* This algorithm has an application in use case scenario where a user wants find coefficients of
|
||||
* a function in a short time by just using points generated by DFT.
|
||||
* Time complexity
|
||||
* this algorithm computes the IDFT in O(nlogn) time in comparison to traditional O(n^2).
|
||||
* This algorithm has an application in use case scenario where a user wants
|
||||
* find coefficients of a function in a short time by just using points
|
||||
* generated by DFT. Time complexity this algorithm computes the IDFT in
|
||||
* O(nlogn) time in comparison to traditional O(n^2).
|
||||
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
||||
*/
|
||||
|
||||
@ -23,14 +23,15 @@
|
||||
*/
|
||||
namespace numerical_methods {
|
||||
/**
|
||||
* @brief InverseFastFourierTransform is a recursive function which returns list of
|
||||
* complex numbers
|
||||
* @brief InverseFastFourierTransform is a recursive function which returns list
|
||||
* of complex numbers
|
||||
* @param p List of Coefficents in form of complex numbers
|
||||
* @param n Count of elements in list p
|
||||
* @returns p if n==1
|
||||
* @returns y if n!=1
|
||||
*/
|
||||
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8_t n) {
|
||||
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p,
|
||||
uint8_t n) {
|
||||
if (n == 1) {
|
||||
return p; /// Base Case To return
|
||||
}
|
||||
@ -52,9 +53,10 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
if (j % 2 == 0) {
|
||||
pe[k1++] = p[j]; /// Assigning values of even Coefficients
|
||||
|
||||
} else
|
||||
} else {
|
||||
po[k2++] = p[j]; /// Assigning value of odd Coefficients
|
||||
}
|
||||
}
|
||||
|
||||
std::complex<double> *ye =
|
||||
InverseFastFourierTransform(pe, n / 2); /// Recursive Call
|
||||
@ -77,10 +79,8 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
}
|
||||
|
||||
if (n != 2) {
|
||||
|
||||
delete[] pe;
|
||||
delete[] po;
|
||||
|
||||
}
|
||||
|
||||
delete[] ye; /// Deleting dynamic array ye
|
||||
@ -118,16 +118,17 @@ static void test() {
|
||||
std::vector<std::complex<double>> r2 = {
|
||||
{1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2
|
||||
|
||||
std::complex<double> *o1 = numerical_methods::InverseFastFourierTransform(t1, n1);
|
||||
std::complex<double> *o1 =
|
||||
numerical_methods::InverseFastFourierTransform(t1, n1);
|
||||
|
||||
std::complex<double> *o2 = numerical_methods::InverseFastFourierTransform(t2, n2);
|
||||
std::complex<double> *o2 =
|
||||
numerical_methods::InverseFastFourierTransform(t2, n2);
|
||||
|
||||
for (uint8_t i = 0; i < n1; i++) {
|
||||
assert((r1[i].real() - o1[i].real() < 0.000000000001) &&
|
||||
(r1[i].imag() - o1[i].imag() <
|
||||
0.000000000001)); /// Comparing for both real and imaginary
|
||||
/// values for test case 1
|
||||
|
||||
}
|
||||
|
||||
for (uint8_t i = 0; i < n2; i++) {
|
||||
@ -135,10 +136,8 @@ static void test() {
|
||||
(r2[i].imag() - o2[i].imag() <
|
||||
0.000000000001)); /// Comparing for both real and imaginary
|
||||
/// values for test case 2
|
||||
|
||||
}
|
||||
|
||||
|
||||
delete[] t1;
|
||||
delete[] t2;
|
||||
delete[] o1;
|
||||
|
Loading…
Reference in New Issue
Block a user