Merge branch 'master' into patch-8

This commit is contained in:
David Leal 2021-07-16 13:53:08 -05:00 committed by GitHub
commit e697904738
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 1115 additions and 16 deletions

View File

@ -113,7 +113,7 @@ bool func(int param1, T param2) {
* @returns void
*/
static void test() {
/* desciptions of the following test */
/* descriptions of the following test */
assert(func(...) == ...); // this ensures that the algorithm works as expected
// can have multiple checks

View File

@ -8,9 +8,11 @@
* [Nqueen Print All Solutions](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/nqueen_print_all_solutions.cpp)
* [Rat Maze](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/rat_maze.cpp)
* [Subarray Sum](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/subarray_sum.cpp)
* [Subset Sum](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/subset_sum.cpp)
* [Sudoku Solve](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/sudoku_solve.cpp)
## Bit Manipulation
* [Count Of Set Bits](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/bit_manipulation/count_of_set_bits.cpp)
* [Hamming Distance](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/bit_manipulation/hamming_distance.cpp)
## Ciphers
@ -74,6 +76,7 @@
* [Egg Dropping Puzzle](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/egg_dropping_puzzle.cpp)
* [Fibonacci Bottom Up](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/fibonacci_bottom_up.cpp)
* [Floyd Warshall](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/floyd_warshall.cpp)
* [House Robber](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/house_robber.cpp)
* [Kadane](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/kadane.cpp)
* [Kadane2](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/kadane2.cpp)
* [Longest Common String](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/longest_common_string.cpp)
@ -269,6 +272,7 @@
* [Linear Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/linear_search.cpp)
* [Median Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/median_search.cpp)
* [Saddleback Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/saddleback_search.cpp)
* [Sublist Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/sublist_search.cpp)
* [Ternary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/ternary_search.cpp)
* [Text Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/text_search.cpp)
@ -299,6 +303,7 @@
* [Quick Sort 3](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/quick_sort_3.cpp)
* [Radix Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/radix_sort.cpp)
* [Radix Sort2](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/radix_sort2.cpp)
* [Random Pivot Quick Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/random_pivot_quick_sort.cpp)
* [Recursive Bubble Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/recursive_bubble_sort.cpp)
* [Selection Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/selection_sort.cpp)
* [Shell Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/shell_sort.cpp)
@ -307,6 +312,7 @@
* [Strand Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/strand_sort.cpp)
* [Swap Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/swap_sort.cpp)
* [Tim Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/tim_sort.cpp)
* [Wave Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/wave_sort.cpp)
* [Wiggle Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/wiggle_sort.cpp)
## Strings

View File

@ -30,11 +30,11 @@ namespace backtracking {
*/
template <size_t V>
void printSolution(const std::array <int, V>& color) {
std::cout << "Following are the assigned colors\n";
std::cout << "Following are the assigned colors" << std::endl;
for (auto &col : color) {
std::cout << col;
}
std::cout << "\n";
std::cout << std::endl;
}
/** A utility function to check if the current color assignment is safe for

106
backtracking/subset_sum.cpp Normal file
View File

@ -0,0 +1,106 @@
/**
* @file
* @brief Implementation of the [Subset
* Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem.
* @details
* We are given an array and a sum value. The algorithm finds all
* the subsets of that array with sum equal to the given sum and return such
* subsets count. This approach will have exponential time complexity.
* @author [Swastika Gupta](https://github.com/Swastyy)
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* @namespace Subsets
* @brief Functions for the [Subset
* Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem.
*/
namespace subset_sum {
/**
* @brief The main function implements count of subsets
* @param sum is the required sum of any subset
* @param in_arr is the input array
* @returns count of the number of subsets with required sum
*/
uint64_t number_of_subsets(int32_t sum, const std::vector<int32_t> &in_arr) {
int32_t nelement = in_arr.size();
uint64_t count_of_subset = 0;
for (int32_t i = 0; i < (1 << (nelement)); i++) {
int32_t check = 0;
for (int32_t j = 0; j < nelement; j++) {
if (i & (1 << j)) {
check += (in_arr[j]);
}
}
if (check == sum) {
count_of_subset++;
}
}
return count_of_subset;
}
} // namespace subset_sum
} // namespace backtracking
/**
* @brief Test implementations
* @returns void
*/
static void test() {
// 1st test
std::cout << "1st test ";
std::vector<int32_t> array1 = {-7, -3, -2, 5, 8}; // input array
assert(backtracking::subset_sum::number_of_subsets(0, array1) ==
2); // first argument in subset_sum function is the required sum and
// second is the input array
std::cout << "passed" << std::endl;
// 2nd test
std::cout << "2nd test ";
std::vector<int32_t> array2 = {1, 2, 3, 3};
assert(backtracking::subset_sum::number_of_subsets(6, array2) ==
3); // here we are expecting 3 subsets which sum up to 6 i.e.
// {(1,2,3),(1,2,3),(3,3)}
std::cout << "passed" << std::endl;
// 3rd test
std::cout << "3rd test ";
std::vector<int32_t> array3 = {1, 1, 1, 1};
assert(backtracking::subset_sum::number_of_subsets(1, array3) ==
4); // here we are expecting 4 subsets which sum up to 1 i.e.
// {(1),(1),(1),(1)}
std::cout << "passed" << std::endl;
// 4th test
std::cout << "4th test ";
std::vector<int32_t> array4 = {3, 3, 3, 3};
assert(backtracking::subset_sum::number_of_subsets(6, array4) ==
6); // here we are expecting 6 subsets which sum up to 6 i.e.
// {(3,3),(3,3),(3,3),(3,3),(3,3),(3,3)}
std::cout << "passed" << std::endl;
// Test 5
std::cout << "5th test ";
std::vector<int32_t> array5 = {};
assert(backtracking::subset_sum::number_of_subsets(6, array5) ==
0); // here we are expecting 0 subsets which sum up to 6 i.e. we
// cannot select anything from an empty array
std::cout << "passed" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}

View File

@ -0,0 +1,80 @@
/**
* @file
* @brief Implementation to [count sets
* bits](https://www.geeksforgeeks.org/count-set-bits-in-an-integer/) in an
* integer.
*
* @details
* We are given an integer number. Lets say, number. The task is to first
* calculate the binary digit of a number and then calculate the total set bits
* of a number.
*
* Set bits in a binary number is represented by 1. Whenever we calculate the
* binary number of an integer value it is formed as the combination of 0s and
* 1s. So digit 1 is known as a set bit in computer terms.
* Time Complexity: O(log n)
* Space complexity: O(1)
* @author [Swastika Gupta](https://github.com/Swastyy)
*/
#include <cassert> /// for assert
#include <iostream> /// for io operations
#include <vector> /// for std::vector
/**
* @namespace bit_manipulation
* @brief Bit manipulation algorithms
*/
namespace bit_manipulation {
/**
* @namespace count_of_set_bits
* @brief Functions for the [count sets
* bits](https://www.geeksforgeeks.org/count-set-bits-in-an-integer/)
* implementation
*/
namespace count_of_set_bits {
/**
* @brief The main function implements set bit count
* @param n is the number whose set bit will be counted
* @returns the count of the number set bit in the binary representation of `n`
*/
std::uint64_t countSetBits(int n) {
int count = 0; // "count" variable is used to count number of 1's in binary
// representation of the number
while (n != 0) {
count += n & 1;
n = n >> 1; // n=n/2
}
return count;
}
} // namespace count_of_set_bits
} // namespace bit_manipulation
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// n = 4 return 1
assert(bit_manipulation::count_of_set_bits::countSetBits(4) == 1);
// n = 6 return 2
assert(bit_manipulation::count_of_set_bits::countSetBits(6) == 2);
// n = 13 return 3
assert(bit_manipulation::count_of_set_bits::countSetBits(13) == 3);
// n = 9 return 2
assert(bit_manipulation::count_of_set_bits::countSetBits(9) == 2);
// n = 15 return 4
assert(bit_manipulation::count_of_set_bits::countSetBits(15) == 4);
// n = 25 return 3
assert(bit_manipulation::count_of_set_bits::countSetBits(25) == 3);
std::cout << "All test cases successfully passed!" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}

View File

@ -0,0 +1,114 @@
/**
* @file
* @brief Implementation of [House Robber
* Problem](https://labuladong.gitbook.io/algo-en/i.-dynamic-programming/houserobber)
* algorithm
* @details
* Solution of House robber problem uses a dynamic programming concept that
* works in \f$O(n)\f$ time and works in \f$O(1)\f$ space.
* @author [Swastika Gupta](https://github.com/Swastyy)
*/
#include <cassert> /// for assert
#include <climits> /// for std::max
#include <iostream> /// for io operations
#include <vector> /// for std::vector
/**
* @namespace dynamic_programming
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace house_robber
* @brief Functions for the [House
* Robber](https://labuladong.gitbook.io/algo-en/i.-dynamic-programming/houserobber)
* algorithm
*/
namespace house_robber {
/**
* @brief The main function that implements the House Robber algorithm using
* dynamic programming
* @param money array containing money in the ith house
* @param n size of array
* @returns maximum amount of money that can be robbed
*/
std::uint32_t houseRobber(const std::vector<uint32_t> &money,
const uint32_t &n) {
if (n == 0) { // if there is no house
return 0;
}
if (n == 1) { // if there is only one house
return money[0];
}
if (n == 2) { // if there are two houses, one with the maximum amount of
// money will be robbed
return std::max(money[0], money[1]);
}
uint32_t max_value = 0; // contains maximum stolen value at the end
uint32_t value1 = money[0];
uint32_t value2 = std::max(money[0], money[1]);
for (uint32_t i = 2; i < n; i++) {
max_value = std::max(money[i] + value1, value2);
value1 = value2;
value2 = max_value;
}
return max_value;
}
} // namespace house_robber
} // namespace dynamic_programming
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// Test 1
// [1, 2, 3, 1] return 4
std::vector<uint32_t> array1 = {1, 2, 3, 1};
std::cout << "Test 1... ";
assert(
dynamic_programming::house_robber::houseRobber(array1, array1.size()) ==
4); // here the two non-adjacent houses that are robbed are first and
// third with total sum money as 4
std::cout << "passed" << std::endl;
// Test 2
// [6, 7, 1, 3, 8, 2, 4] return 19
std::vector<uint32_t> array2 = {6, 7, 1, 3, 8, 2, 4};
std::cout << "Test 2... ";
assert(
dynamic_programming::house_robber::houseRobber(array2, array2.size()) ==
19); // here the four non-adjacent houses that are robbed are first,
// third, fifth and seventh with total sum money as 19
std::cout << "passed" << std::endl;
// Test 3
// [] return 0
std::vector<uint32_t> array3 = {};
std::cout << "Test 3... ";
assert(
dynamic_programming::house_robber::houseRobber(array3, array3.size()) ==
0); // since there is no house no money can be robbed
std::cout << "passed" << std::endl;
// Test 4
// [2,7,9,3,1] return 12
std::vector<uint32_t> array4 = {2, 7, 9, 3, 1};
std::cout << "Test 4... ";
assert(
dynamic_programming::house_robber::houseRobber(array4, array4.size()) ==
12); // here the three non-adjacent houses that are robbed are first,
// third and fifth with total sum money as 12
std::cout << "passed" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}

370
search/sublist_search.cpp Normal file
View File

@ -0,0 +1,370 @@
/**
* @file
* @brief Implementation of the [Sublist Search
* Algorithm](https://www.geeksforgeeks.org/sublist-search-search-a-linked-list-in-another-list)
* @details
*
* ### Algorithm
*
* * Sublist search is used to detect a presence of one list in another list.
* * Suppose we have a single-node list (let's say the first list), and we
* want to ensure that the list is present in another list (let's say the
* second list), then we can perform the sublist search to find it.
*
* * For instance, the first list contains these elements: 23 -> 30 -> 41,
* and the second list contains these elements: 10 -> 15 -> 23 -> 30 -> 41
* -> 49. At a glance, we see that the first list presents in the second list.
*
* ### Working
*
* * The sublist search algorithm works by comparing the first element
* of the first list with the first element of the second list.
* * If the two values don't match, it goes to the next element of the
* second list. It does this until the two values match.
*
* @author [Nitin Sharma](https://github.com/foo290)
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace search
* @brief Searching algorithms
*/
namespace search {
/**
* @namespace sublist_search
* @brief Functions for the [Sublist
* Search](https://www.geeksforgeeks.org/sublist-search-search-a-linked-list-in-another-list)
* implementation
*/
namespace sublist_search {
/**
* @brief A Node structure representing a single link Node in a linked list
*/
struct Node {
uint32_t data = 0; ///< the key/value of the node
Node *next{}; ///< pointer to the next node
};
/**
* @brief A simple function to print the linked list
* @param start The head of the linked list
* @returns void
*/
void printLinkedList(Node *start) {
while (start != nullptr) {
std::cout << "->" << start->data;
start = start->next;
}
std::cout << std::endl;
}
/**
* @brief Give a vector of data,
* it adds each element of vector in the linked list and return the address of
* head pointer.
* @param data A vector of "int" containing the data that is supposed to be
* stored in nodes of linked list.
* @returns Node* A head pointer to the linked list.
*/
Node *makeLinkedList(const std::vector<uint64_t> &data) {
/// This is used in test cases for rapidly creating linked list with 100+
/// elements, instead of hard-coding 100 elements in test cases.
Node *head = nullptr;
Node *tail = nullptr;
for (int i : data) {
Node *node = new Node;
node->data = i;
node->next = nullptr;
if (head == nullptr) {
head = node;
tail = node;
} else {
tail->next = node;
tail = tail->next;
}
}
return head;
}
/**
* @brief Main searching function
* @param sublist A linked list which is supposed to be searched in mainList.
* @param mainList A linked list in which sublist will be searched.
* @returns true if the sublist is found
* @returns false if the sublist is NOT found
*/
bool sublistSearch(Node *sublist, Node *mainList) {
if (sublist == nullptr || mainList == nullptr) {
return false;
}
/// Initialize target pointer to the head node of sublist.
Node *target_ptr = sublist;
while (mainList != nullptr) {
/// Initialize main pointer to the current node of main list.
Node *main_ptr = mainList;
while (target_ptr != nullptr) {
if (main_ptr == nullptr) {
return false;
} else if (main_ptr->data == target_ptr->data) {
/// If the data of target node and main node is equal then move
/// to the next node of both lists.
target_ptr = target_ptr->next;
main_ptr = main_ptr->next;
} else {
break;
}
}
if (target_ptr == nullptr) {
/// Is target pointer becomes null that means the target list is
/// been traversed without returning false. Which means the sublist
/// has been found and return ture.
return true;
}
/// set the target pointer again to stating point of target list.
target_ptr = sublist;
/// set the main pointer to the next element of the main list and repeat
/// the algo.
mainList = mainList->next;
}
/// If the main list is exhausted, means sublist does not found, return
/// false
return false;
}
} // namespace sublist_search
} // namespace search
/**
* @brief class encapsulating the necessary test cases
*/
class TestCases {
private:
/**
* @brief A function to print given message on console.
* @tparam T Type of the given message.
* @returns void
* */
template <typename T>
void log(T msg) {
// It's just to avoid writing cout and endl
std::cout << "[TESTS] : ---> " << msg << std::endl;
}
public:
/**
* @brief Executes test cases
* @returns void
* */
void runTests() {
log("Running Tests...");
testCase_1();
testCase_2();
testCase_3();
log("Test Cases over!");
std::cout << std::endl;
}
/**
* @brief A test case contains edge case, Only contains one element.
* @returns void
* */
void testCase_1() {
const bool expectedOutput = true; ///< Expected output of this test
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
"~");
log("This is test case 1 for sublist search Algorithm : ");
log("Description:");
log(" EDGE CASE : Only contains one element");
std::vector<uint64_t> sublistData = {
6}; ///< Data to make linked list which will be the sublist
std::vector<uint64_t> mainlistData = {
2, 5, 6, 7,
8}; ///< Data to make linked list which will be the main list
search::sublist_search::Node *sublistLL =
search::sublist_search::makeLinkedList(
sublistData); ///< Sublist to be searched
search::sublist_search::Node *mainlistLL =
search::sublist_search::makeLinkedList(
mainlistData); ///< Main list in which sublist is to be
///< searched
bool exists = search::sublist_search::sublistSearch(
sublistLL, mainlistLL); ///< boolean, if sublist exist or not
log("Checking assert expression...");
assert(exists == expectedOutput);
log("Assertion check passed!");
log("[PASS] : TEST CASE 1 PASS!");
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
"~");
delete (sublistLL);
delete (mainlistLL);
}
/**
* @brief A test case which contains main list of 100 elements and sublist
* of 20.
* @returns void
* */
void testCase_2() {
const bool expectedOutput = true; /// Expected output of this test
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
"~");
log("This is test case 2 for sublist search Algorithm : ");
log("Description:");
log(" contains main list of 100 elements and sublist of 20");
std::vector<uint64_t> sublistData(
20); ///< Data to make linked list which will be the sublist
std::vector<uint64_t> mainlistData(
100); ///< Main list in which sublist is to be searched
for (int i = 0; i < 100; i++) {
/// Inserts 100 elements in main list
mainlistData[i] = i + 1;
}
int temp = 0;
for (int i = 45; i < 65; i++) {
/// Inserts 20 elements in sublist
sublistData[temp] = i + 1;
temp++;
}
search::sublist_search::Node *sublistLL =
search::sublist_search::makeLinkedList(
sublistData); ///< Sublist to be searched
search::sublist_search::Node *mainlistLL =
search::sublist_search::makeLinkedList(
mainlistData); ///< Main list in which sublist is to be
///< searched
bool exists = search::sublist_search::sublistSearch(
sublistLL, mainlistLL); ///< boolean, if sublist exist or not
log("Checking assert expression...");
assert(exists == expectedOutput);
log("Assertion check passed!");
log("[PASS] : TEST CASE 2 PASS!");
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
"~");
}
/**
* @brief A test case which contains main list of 50 elements and sublist
* of 20.
* @returns void
* */
void testCase_3() {
const bool expectedOutput = false; ///< Expected output of this test
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
"~");
log("This is test case 3 for sublist search Algorithm : ");
log("Description:");
log(" contains main list of 50 elements and sublist of 20");
std::vector<uint64_t> sublistData(20); ///< Sublist to be searched
std::vector<uint64_t> mainlistData(
50); ///< Main list in which sublist is to be searched
for (int i = 0; i < 50; i++) {
/// Inserts 100 elements in main list
mainlistData.push_back(i + 1);
}
for (int i = 45; i < 65; i++) {
/// Inserts 20 elements in sublist
sublistData.push_back(i + 1);
}
search::sublist_search::Node *sublistLL =
search::sublist_search::makeLinkedList(
sublistData); ///< Sublist to be searched
search::sublist_search::Node *mainlistLL =
search::sublist_search::makeLinkedList(
mainlistData); ///< Main list in which sublist is to be
///< searched
bool exists = search::sublist_search::sublistSearch(
sublistLL, mainlistLL); ///< boolean, if sublist exist or not
log("Checking assert expression...");
assert(exists == expectedOutput);
log("Assertion check passed!");
log("[PASS] : TEST CASE 3 PASS!");
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
"~");
}
};
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
TestCases tc;
tc.runTests();
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test(); // run self-test implementations
std::vector<uint64_t> mainlistData = {
2, 5, 6, 7, 8}; ///< Main list in which sublist is to be searched
std::vector<uint64_t> sublistData = {6, 8}; ///< Sublist to be searched
search::sublist_search::Node *mainlistLL =
search::sublist_search::makeLinkedList(mainlistData);
search::sublist_search::Node *sublistLL =
search::sublist_search::makeLinkedList(
sublistData); ///< Main list in which sublist is to be
///< searched
bool exists = search::sublist_search::sublistSearch(
sublistLL,
mainlistLL); ///< boolean to check if the sublist exists or not
std::cout << "Sublist: " << std::endl;
search::sublist_search::printLinkedList(sublistLL);
std::cout << "Main list: " << std::endl;
search::sublist_search::printLinkedList(mainlistLL);
std::cout << std::endl;
if (exists) {
std::cout << "[TRUE] - sublist found in main list\n";
} else {
std::cout << "[FALSE] - sublist NOT found in main list\n";
}
return 0;
}

View File

@ -2,14 +2,12 @@
* @file
* @brief Implementation of [Cycle
* sort](https://en.wikipedia.org/wiki/Cycle_sort) algorithm
*
* @details
* Cycle Sort is a sorting algorithm that works in \f$O(n^2)\f$ time in best cas
* and works in \f$O(n^2)\f$ in worst case. If a element is already at its
* Cycle Sort is a sorting algorithm that works in \f$O(n^2)\f$ time in the best
* case and works in \f$O(n^2)\f$ in worst case. If a element is already at its
* correct position, do nothing. If a element is not at its correct position,
* we then need to move it to its correct position by computing the correct
* positions.Therefore, we should make sure the duplicate elements.
*
* @author [TsungHan Ho](https://github.com/dalaoqi)
*/
@ -38,14 +36,14 @@ namespace cycle_sort {
template <typename T>
std::vector<T> cycleSort(const std::vector<T> &in_arr) {
std::vector<T> arr(in_arr);
for (size_t cycle_start = 0; cycle_start <= arr.size() - 1; cycle_start++) {
for (int cycle_start = 0; cycle_start <= arr.size() - 1; cycle_start++) {
// initialize item
T item = arr[cycle_start];
// Count the number of elements smaller than item, this number is the
// correct index of item.
int pos = cycle_start;
for (size_t i = cycle_start + 1; i < arr.size(); i++) {
for (int i = cycle_start + 1; i < arr.size(); i++) {
if (arr[i] < item) {
pos++;
}
@ -58,8 +56,11 @@ std::vector<T> cycleSort(const std::vector<T> &in_arr) {
// duplicate elements
while (item == arr[pos]) pos += 1;
if (pos == cycle_start) {
continue;
} else {
std::swap(item, arr[pos]);
}
// Rest of the elements
while (pos != cycle_start) {
pos = cycle_start;
@ -71,9 +72,13 @@ std::vector<T> cycleSort(const std::vector<T> &in_arr) {
}
// duplicate elements
while (item == arr[pos]) pos += 1;
if (item == arr[pos]) {
continue;
} else {
std::swap(item, arr[pos]);
}
}
}
return arr;
}
} // namespace cycle_sort
@ -84,11 +89,11 @@ std::vector<T> cycleSort(const std::vector<T> &in_arr) {
* @returns void
*/
static void test() {
// [506, 48, 123, 79, 0, 362, 951, 500, 0] return [0, 0, 48, 79, 123, 362,
// 500, 506, 951]
std::vector<int> array1 = {506, 48, 123, 79, 0, 362, 951, 500, 0};
// Test 1
// [4, 3, 2, 1] return [1, 2, 3, 4]
std::vector<uint32_t> array1 = {4, 3, 2, 1};
std::cout << "Test 1... ";
std::vector<int> arr1 = sorting::cycle_sort::cycleSort(array1);
std::vector<uint32_t> arr1 = sorting::cycle_sort::cycleSort(array1);
assert(std::is_sorted(std::begin(arr1), std::end(arr1)));
std::cout << "passed" << std::endl;
@ -98,6 +103,21 @@ static void test() {
std::vector<double> arr2 = sorting::cycle_sort::cycleSort(array2);
assert(std::is_sorted(std::begin(arr2), std::end(arr2)));
std::cout << "passed" << std::endl;
// Test 3
// [3, 3, 3, 3] return [3, 3, 3, 3]
std::vector<uint32_t> array3 = {3, 3, 3, 3};
std::cout << "Test 3... ";
std::vector<uint32_t> arr3 = sorting::cycle_sort::cycleSort(array3);
assert(std::is_sorted(std::begin(arr3), std::end(arr3)));
std::cout << "passed" << std::endl;
// [9, 4, 6, 8, 14, 3] return [9, 4, 6, 8, 14, 3]
std::vector<uint32_t> array4 = {3, 4, 6, 8, 9, 14};
std::cout << "Test 4... ";
std::vector<uint32_t> arr4 = sorting::cycle_sort::cycleSort(array4);
assert(std::is_sorted(std::begin(arr4), std::end(arr4)));
std::cout << "passed" << std::endl;
}
/**

View File

@ -0,0 +1,309 @@
/**
* @file
* @brief Implementation of the [Random Pivot Quick Sort](https://www.sanfoundry.com/cpp-program-implement-quick-sort-using-randomisation) algorithm.
* @details
* * A random pivot quick sort algorithm is pretty much same as quick sort with a difference of having a logic of
* selecting next pivot element from the input array.
* * Where in quick sort is fast, but still can give you the time complexity of O(n^2) in worst case.
* * To avoid hitting the time complexity of O(n^2), we use the logic of randomize the selection process of pivot
* element.
*
* ### Logic
* * The logic is pretty simple, the only change is in the partitioning algorithm, which is selecting the
* pivot element.
* * Instead of selecting the last or the first element from array for pivot we use a random index to select
* pivot element.
* * This avoids hitting the O(n^2) time complexity in practical use cases.
*
* ### Partition Logic
* * Partitions are done such as numbers lower than the "pivot" element is arranged on the left side of the "pivot",
* and number larger than the "pivot" element are arranged on the right part of the array.
*
* ### Algorithm
* * Select the pivot element randomly using getRandomIndex() function from this namespace.
* * Initialize the pInd (partition index) from the start of the array.
* * Loop through the array from start to less than end. (from start to < end).
* (Inside the loop) :-
* * Check if the current element (arr[i]) is less than the pivot element in each iteration.
* * If current element in the iteration is less than the pivot element,
* then swap the elements at current index (i) and partition index (pInd) and increment the partition index by one.
* * At the end of the loop, swap the pivot element with partition index element.
* * Return the partition index from the function.
*
* @author [Nitin Sharma](https://github.com/foo290)
*/
#include <iostream> /// for IO operations
#include <ctime> /// for initializing random number generator
#include <cassert> /// for assert
#include <algorithm> /// for std::is_sorted(), std::swap()
#include <array> /// for std::array
#include <tuple> /// for returning multiple values form a function at once
/**
* @namespace sorting
* @brief Sorting algorithms
*/
namespace sorting {
/**
* @brief Functions for the [Random Pivot Quick Sort](https://www.sanfoundry.com/cpp-program-implement-quick-sort-using-randomisation) implementation
* @namespace random_pivot_quick_sort
*/
namespace random_pivot_quick_sort {
/**
* @brief Utility function to print the array
* @tparam T size of the array
* @param arr array used to print its content
* @returns void
* */
template<size_t T>
void showArray(std::array<int64_t , T> arr) {
for (int64_t i = 0; i < arr.size(); i++) {
std::cout << arr[i] << " ";
}
std::cout << std::endl;
}
/**
* @brief Takes the start and end indices of an array and returns a random int64_teger between the range of those two
* for selecting pivot element.
*
* @param start The starting index.
* @param end The ending index.
* @returns int64_t A random number between start and end index.
* */
int64_t getRandomIndex(int64_t start, int64_t end) {
srand(time(nullptr)); // Initialize random number generator.
int64_t randomPivotIndex = start + rand() % (end - start + 1);
return randomPivotIndex;
}
/**
* @brief A partition function which handles the partition logic of quick sort.
* @tparam size size of the array to be passed as argument.
* @param start The start index of the passed array
* @param end The ending index of the passed array
* @returns std::tuple<int64_t , std::array<int64_t , size>> A tuple of pivot index and pivot sorted array.
*/
template<size_t size>
std::tuple<int64_t , std::array<int64_t , size>> partition(std::array<int64_t , size> arr, int64_t start, int64_t end) {
int64_t pivot = arr[end]; // Randomly selected element will be here from caller function (quickSortRP()).
int64_t pInd = start;
for (int64_t i = start; i < end; i++) {
if (arr[i] <= pivot) {
std::swap(arr[i], arr[pInd]); // swapping the elements from current index to pInd.
pInd++;
}
}
std::swap(arr[pInd], arr[end]); // swapping the pivot element to its sorted position
return std::make_tuple(pInd, arr);
}
/**
* @brief Random pivot quick sort function. This function is the starting point of the algorithm.
* @tparam size size of the array to be passed as argument.
* @param start The start index of the passed array
* @param end The ending index of the passed array
* @returns std::array<int64_t , size> A fully sorted array in ascending order.
*/
template<size_t size>
std::array<int64_t , size> quickSortRP(std::array<int64_t , size> arr, int64_t start, int64_t end) {
if (start < end) {
int64_t randomIndex = getRandomIndex(start, end);
// switching the pivot with right most bound.
std::swap(arr[end], arr[randomIndex]);
int64_t pivotIndex = 0;
// getting pivot index and pivot sorted array.
std::tie(pivotIndex, arr) = partition(arr, start, end);
// Recursively calling
std::array<int64_t , arr.size()> rightSortingLeft = quickSortRP(arr, start, pivotIndex - 1);
std::array<int64_t , arr.size()> full_sorted = quickSortRP(rightSortingLeft, pivotIndex + 1, end);
arr = full_sorted;
}
return arr;
}
/**
* @brief A function utility to generate unsorted array of given size and range.
* @tparam size Size of the output array.
* @param from Stating of the range.
* @param to Ending of the range.
* @returns std::array<int64_t , size> Unsorted array of specified size.
* */
template<size_t size>
std::array<int64_t , size> generateUnsortedArray(int64_t from, int64_t to) {
srand(time(nullptr));
std::array<int64_t , size> unsortedArray{};
assert(from < to);
int64_t i = 0;
while (i < size) {
int64_t randomNum = from + rand() % (to - from + 1);
if (randomNum) {
unsortedArray[i] = randomNum;
i++;
}
}
return unsortedArray;
}
} // namespace random_pivot_quick_sort
} // namespace sorting
/**
* @brief a class containing the necessary test cases
*/
class TestCases {
private:
/**
* @brief A function to print64_t given message on console.
* @tparam T Type of the given message.
* @returns void
* */
template<typename T>
void log(T msg) {
// It's just to avoid writing cout and endl
std::cout << "[TESTS] : ---> " << msg << std::endl;
}
public:
/**
* @brief Executes test cases
* @returns void
* */
void runTests() {
log("Running Tests...");
testCase_1();
testCase_2();
testCase_3();
log("Test Cases over!");
std::cout << std::endl;
}
/**
* @brief A test case with single input
* @returns void
* */
void testCase_1() {
const int64_t inputSize = 1;
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
log("This is test case 1 for Random Pivot Quick Sort Algorithm : ");
log("Description:");
log(" EDGE CASE : Only contains one element");
std::array<int64_t , inputSize> unsorted_arr{2};
int64_t start = 0;
int64_t end = unsorted_arr.size() - 1; // length - 1
log("Running algorithm of data of length 50 ...");
std::array<int64_t , unsorted_arr.size()> sorted_arr = sorting::random_pivot_quick_sort::quickSortRP(
unsorted_arr, start, end
);
log("Algorithm finished!");
log("Checking assert expression...");
assert(std::is_sorted(sorted_arr.begin(), sorted_arr.end()));
log("Assertion check passed!");
log("[PASS] : TEST CASE 1 PASS!");
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
/**
* @brief A test case with input array of length 500
* @returns void
* */
void testCase_2() {
const int64_t inputSize = 500;
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
log("Description:");
log(" BIG INPUT : Contains 500 elements and repeated elements");
log("This is test case 2 for Random Pivot Quick Sort Algorithm : ");
std::array<int64_t , inputSize> unsorted_arr = sorting::random_pivot_quick_sort::generateUnsortedArray<inputSize>(1, 10000);
int64_t start = 0;
int64_t end = unsorted_arr.size() - 1; // length - 1
log("Running algorithm of data of length 500 ...");
std::array<int64_t , unsorted_arr.size()> sorted_arr = sorting::random_pivot_quick_sort::quickSortRP(
unsorted_arr, start, end
);
log("Algorithm finished!");
log("Checking assert expression...");
assert(std::is_sorted(sorted_arr.begin(), sorted_arr.end()));
log("Assertion check passed!");
log("[PASS] : TEST CASE 2 PASS!");
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
/**
* @brief A test case with array of length 1000.
* @returns void
* */
void testCase_3() {
const int64_t inputSize = 1000;
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
log("This is test case 3 for Random Pivot Quick Sort Algorithm : ");
log("Description:");
log(" LARGE INPUT : Contains 1000 elements and repeated elements");
std::array<int64_t , inputSize> unsorted_arr = sorting::random_pivot_quick_sort::generateUnsortedArray<inputSize>(1, 10000);
int64_t start = 0;
int64_t end = unsorted_arr.size() - 1; // length - 1
log("Running algorithm...");
std::array<int64_t , unsorted_arr.size()> sorted_arr = sorting::random_pivot_quick_sort::quickSortRP(
unsorted_arr, start, end
);
log("Algorithm finished!");
log("Checking assert expression...");
assert(std::is_sorted(sorted_arr.begin(), sorted_arr.end()));
log("Assertion check passed!");
log("[PASS] : TEST CASE 3 PASS!");
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
};
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
TestCases tc = TestCases();
tc.runTests();
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test(); // Executes various test cases.
const int64_t inputSize = 10;
std::array<int64_t , inputSize> unsorted_array = sorting::random_pivot_quick_sort::generateUnsortedArray<inputSize>(50, 1000);
std::cout << "Unsorted array is : " << std::endl;
sorting::random_pivot_quick_sort::showArray(unsorted_array);
std::array<int64_t , inputSize> sorted_array = sorting::random_pivot_quick_sort::quickSortRP(
unsorted_array, 0,
unsorted_array.size() - 1
);
std::cout << "Sorted array is : " << std::endl;
sorting::random_pivot_quick_sort::showArray(sorted_array);
return 0;
}

94
sorting/wave_sort.cpp Normal file
View File

@ -0,0 +1,94 @@
/**
* @file
* @brief Implementation of the [Wave
* sort](https://www.geeksforgeeks.org/sort-array-wave-form-2/) algorithm
* @details
* Wave Sort is a sorting algorithm that works in \f$O(nlogn)\f$ time assuming
* the sort function used works in \f$O(nlogn)\f$ time.
* @author [Swastika Gupta](https://github.com/Swastyy)
*/
#include <algorithm> /// for std::is_sorted, std::swap
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace sorting
* @brief Sorting algorithms
*/
namespace sorting {
/**
* @namespace wave_sort
* @brief Functions for the [Wave
* sort](https://www.geeksforgeeks.org/sort-array-wave-form-2/) implementation
*/
namespace wave_sort {
/**
* @brief The main function implements that implements the Wave Sort algorithm
* @tparam T type of array
* @param in_arr array to be sorted
* @returns arr the wave sorted array
*/
template <typename T>
std::vector<T> waveSort(const std::vector<T> &in_arr, int64_t n) {
std::vector<T> arr(in_arr);
for (int64_t i = 0; i < n; i++) {
arr[i] = in_arr[i];
}
std::sort(arr.begin(), arr.end());
for (int64_t i = 0; i < n - 1; i += 2) { // swap all the adjacent elements
std::swap(arr[i], arr[i + 1]);
}
return arr;
}
} // namespace wave_sort
} // namespace sorting
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// [10, 90, 49, 2, 1, 5, 23] return [2, 1, 10, 5, 49, 23, 90]
std::vector<int64_t> array1 = {10, 90, 49, 2, 1, 5, 23};
std::cout << "Test 1... ";
std::vector<int64_t> arr1 = sorting::wave_sort::waveSort(array1, 7);
const std::vector<int64_t> o1 = {2, 1, 10, 5, 49, 23, 90};
assert(arr1 == o1);
std::cout << "passed" << std::endl;
// [1, 3, 4, 2, 7, 8] return [2, 1, 4, 3, 8, 7]
std::vector<int64_t> array2 = {1, 3, 4, 2, 7, 8};
std::cout << "Test 2... ";
std::vector<int64_t> arr2 = sorting::wave_sort::waveSort(array2, 6);
const std::vector<int64_t> o2 = {2, 1, 4, 3, 8, 7};
assert(arr2 == o2);
std::cout << "passed" << std::endl;
// [3, 3, 3, 3] return [3, 3, 3, 3]
std::vector<int64_t> array3 = {3, 3, 3, 3};
std::cout << "Test 3... ";
std::vector<int64_t> arr3 = sorting::wave_sort::waveSort(array3, 4);
const std::vector<int64_t> o3 = {3, 3, 3, 3};
assert(arr3 == o3);
std::cout << "passed" << std::endl;
// [9, 4, 6, 8, 14, 3] return [4, 3, 8, 6, 14, 9]
std::vector<int64_t> array4 = {9, 4, 6, 8, 14, 3};
std::cout << "Test 4... ";
std::vector<int64_t> arr4 = sorting::wave_sort::waveSort(array4, 6);
const std::vector<int64_t> o4 = {4, 3, 8, 6, 14, 9};
assert(arr4 == o4);
std::cout << "passed" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}