feat: Added Graham Scan Algorithm. (#1836)

* Implementated Grahamscan Algorithm for Convex Hull

* Update graham_scan_algorithm.cpp

* Update graham_scan_functions.h

* Update graham_scan_algorithm.cpp

* Update graham_scan_functions.h

* Update graham_scan_algorithm.cpp

* Update and rename graham_scan_functions.h to graham_scan_functions.hpp

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_functions.hpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_functions.hpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* updating DIRECTORY.md

* clang-format and clang-tidy fixes for e89e4c8c

* clang-format and clang-tidy fixes for 7df4778f

* Fix #1

* Update graham_scan_functions.hpp

* Delete composite_simpson_rule.cpp

* Delete inverse_fast_fourier_transform.cpp

* Fix #2

* updating DIRECTORY.md

* clang-format and clang-tidy fixes for 69b6832b

* Fix #3

* clang-format and clang-tidy fixes for 1c05ca7c

* Update graham_scan_functions.hpp

* Fix #4

* clang-format and clang-tidy fixes for 2957fd21

* Create composite_simpson_rule.cpp

* updating DIRECTORY.md

* Create inverse_fast_fourier_transform.cpp

* updating DIRECTORY.md

* clang-format and clang-tidy fixes for 405d21a5

* clang-format and clang-tidy fixes for 333ef5ca

* Update geometry/graham_scan_functions.hpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_functions.hpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update geometry/graham_scan_algorithm.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* clang-format and clang-tidy fixes for ee4cb635

* Update graham_scan_algorithm.cpp

* Update graham_scan_functions.hpp

* clang-format and clang-tidy fixes for f2f69234

* Update graham_scan_functions.hpp

* Create partition_problem.cpp

* Update partition_problem.cpp

* Delete partition_problem.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Lajat5 2021-11-14 22:26:46 +05:30 committed by GitHub
parent 5147306db3
commit ea76786f12
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 447 additions and 160 deletions

View File

@ -109,6 +109,8 @@
* [Word Break](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/word_break.cpp) * [Word Break](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/word_break.cpp)
## Geometry ## Geometry
* [Graham Scan Algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/geometry/graham_scan_algorithm.cpp)
* [Graham Scan Functions](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/geometry/graham_scan_functions.hpp)
* [Jarvis Algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/geometry/jarvis_algorithm.cpp) * [Jarvis Algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/geometry/jarvis_algorithm.cpp)
* [Line Segment Intersection](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/geometry/line_segment_intersection.cpp) * [Line Segment Intersection](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/geometry/line_segment_intersection.cpp)

View File

@ -0,0 +1,76 @@
/******************************************************************************
* @file
* @brief Implementation of the [Convex
* Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
* Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the
* subset.
*
* The worst case time complexity of Jarviss Algorithm is O(n^2). Using
* Grahams scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without
* actually computing them (See the compare() function below) because
* computation of actual angles would be inefficient since trigonometric
* functions are not simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep
* track of recent three points, and find the angle formed by them. Let the
* three points be prev(p), curr(c) and next(n). If the orientation of these
* points (considering them in the same order) is not counterclockwise, we
* discard c, otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
#include <cassert> /// for std::assert
#include <iostream> /// for IO Operations
#include <vector> /// for std::vector
#include "./graham_scan_functions.hpp" /// for all the functions used
/*******************************************************************************
* @brief Self-test implementations
* @returns void
*******************************************************************************/
static void test() {
std::vector<geometry::grahamscan::Point> points = {
{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};
std::vector<geometry::grahamscan::Point> expected_result = {
{0, 3}, {4, 4}, {3, 1}, {0, 0}};
std::vector<geometry::grahamscan::Point> derived_result;
std::vector<geometry::grahamscan::Point> res;
derived_result = geometry::grahamscan::convexHull(points, points.size());
std::cout << "1st test: ";
for (int i = 0; i < expected_result.size(); i++) {
assert(derived_result[i].x == expected_result[i].x);
assert(derived_result[i].y == expected_result[i].y);
}
std::cout << "passed!" << std::endl;
}
/*******************************************************************************
* @brief Main function
* @returns 0 on exit
*******************************************************************************/
int main() {
test(); // run self-test implementations
return 0;
}

View File

@ -0,0 +1,209 @@
/******************************************************************************
* @file
* @brief Implementation of the [Convex
* Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
* Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the
* subset.
*
* The worst case time complexity of Jarviss Algorithm is O(n^2). Using
* Grahams scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without
* actually computing them (See the compare() function below) because
* computation of actual angles would be inefficient since trigonometric
* functions are not simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep
* track of recent three points, and find the angle formed by them. Let the
* three points be prev(p), curr(c) and next(n). If orientation of these points
* (considering them in same order) is not counterclockwise, we discard c,
* otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
#include <algorithm> /// for std::swap
#include <cstdlib> /// for mathematics and datatype conversion
#include <iostream> /// for IO operations
#include <stack> /// for std::stack
#include <vector> /// for std::vector
/******************************************************************************
* @namespace geometry
* @brief geometric algorithms
*******************************************************************************/
namespace geometry {
/******************************************************************************
* @namespace graham scan
* @brief convex hull algorithm
*******************************************************************************/
namespace grahamscan {
/******************************************************************************
* @struct Point
* @brief for X and Y co-ordinates of the co-ordinate.
*******************************************************************************/
struct Point {
int x, y;
};
// A global point needed for sorting points with reference
// to the first point Used in compare function of qsort()
Point p0;
/******************************************************************************
* @brief A utility function to find next to top in a stack.
* @param S Stack to be used for the process.
* @returns @param Point Co-ordinates of the Point <int, int>
*******************************************************************************/
Point nextToTop(std::stack<Point> *S) {
Point p = S->top();
S->pop();
Point res = S->top();
S->push(p);
return res;
}
/******************************************************************************
* @brief A utility function to return square of distance between p1 and p2.
* @param p1 Co-ordinates of Point 1 <int, int>.
* @param p2 Co-ordinates of Point 2 <int, int>.
* @returns @param int distance between p1 and p2.
*******************************************************************************/
int distSq(Point p1, Point p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
/******************************************************************************
* @brief To find orientation of ordered triplet (p, q, r).
* @param p Co-ordinates of Point p <int, int>.
* @param q Co-ordinates of Point q <int, int>.
* @param r Co-ordinates of Point r <int, int>.
* @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise,
* 2 --> Counterclockwise
*******************************************************************************/
int orientation(Point p, Point q, Point r) {
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val == 0) {
return 0; // collinear
}
return (val > 0) ? 1 : 2; // clock or counter-clock wise
}
/******************************************************************************
* @brief A function used by library function qsort() to sort an array of
* points with respect to the first point
* @param vp1 Co-ordinates of Point 1 <int, int>.
* @param vp2 Co-ordinates of Point 2 <int, int>.
* @returns @param int distance between p1 and p2.
*******************************************************************************/
int compare(const void *vp1, const void *vp2) {
auto *p1 = static_cast<const Point *>(vp1);
auto *p2 = static_cast<const Point *>(vp2);
// Find orientation
int o = orientation(p0, *p1, *p2);
if (o == 0) {
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
}
return (o == 2) ? -1 : 1;
}
/******************************************************************************
* @brief Prints convex hull of a set of n points.
* @param points vector of Point<int, int> with co-ordinates.
* @param size Size of the vector.
* @returns @param vector vector of Conver Hull.
*******************************************************************************/
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
// Find the bottom-most point
int ymin = points[0].y, min = 0;
for (int i = 1; i < size; i++) {
int y = points[i].y;
// Pick the bottom-most or chose the left-most point in case of tie
if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) {
ymin = points[i].y, min = i;
}
}
// Place the bottom-most point at first position
std::swap(points[0], points[min]);
// Sort n-1 points with respect to the first point. A point p1 comes
// before p2 in sorted output if p2 has larger polar angle
// (in counterclockwise direction) than p1.
p0 = points[0];
qsort(&points[1], size - 1, sizeof(Point), compare);
// If two or more points make same angle with p0, Remove all but the one
// that is farthest from p0 Remember that, in above sorting, our criteria
// was to keep the farthest point at the end when more than one points have
// same angle.
int m = 1; // Initialize size of modified array
for (int i = 1; i < size; i++) {
// Keep removing i while angle of i and i+1 is same with respect to p0
while (i < size - 1 && orientation(p0, points[i], points[i + 1]) == 0) {
i++;
}
points[m] = points[i];
m++; // Update size of modified array
}
// If modified array of points has less than 3 points, convex hull is not
// possible
if (m < 3) {
return {};
};
// Create an empty stack and push first three points to it.
std::stack<Point> St;
St.push(points[0]);
St.push(points[1]);
St.push(points[2]);
// Process remaining n-3 points
for (int i = 3; i < m; i++) {
// Keep removing top while the angle formed by
// points next-to-top, top, and points[i] makes
// a non-left turn
while (St.size() > 1 &&
orientation(nextToTop(&St), St.top(), points[i]) != 2) {
St.pop();
}
St.push(points[i]);
}
std::vector<Point> result;
// Now stack has the output points, push them into the resultant vector
while (!St.empty()) {
Point p = St.top();
result.push_back(p);
St.pop();
}
return result; // return resultant vector with Convex Hull co-ordinates.
}
} // namespace grahamscan
} // namespace geometry

View File

@ -1,160 +1,160 @@
/** /**
* @file * @file
* @brief [An inverse fast Fourier transform * @brief [An inverse fast Fourier transform
* (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/) * (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/)
* is an algorithm that computes the inverse fourier transform. * is an algorithm that computes the inverse fourier transform.
* @details * @details
* This algorithm has an application in use case scenario where a user wants * This algorithm has an application in use case scenario where a user wants
* find coefficients of a function in a short time by just using points * find coefficients of a function in a short time by just using points
* generated by DFT. Time complexity this algorithm computes the IDFT in * generated by DFT. Time complexity this algorithm computes the IDFT in
* O(nlogn) time in comparison to traditional O(n^2). * O(nlogn) time in comparison to traditional O(n^2).
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
*/ */
#include <cassert> /// for assert #include <cassert> /// for assert
#include <cmath> /// for mathematical-related functions #include <cmath> /// for mathematical-related functions
#include <complex> /// for storing points and coefficents #include <complex> /// for storing points and coefficents
#include <iostream> /// for IO operations #include <iostream> /// for IO operations
#include <vector> /// for std::vector #include <vector> /// for std::vector
/** /**
* @namespace numerical_methods * @namespace numerical_methods
* @brief Numerical algorithms/methods * @brief Numerical algorithms/methods
*/ */
namespace numerical_methods { namespace numerical_methods {
/** /**
* @brief InverseFastFourierTransform is a recursive function which returns list * @brief InverseFastFourierTransform is a recursive function which returns list
* of complex numbers * of complex numbers
* @param p List of Coefficents in form of complex numbers * @param p List of Coefficents in form of complex numbers
* @param n Count of elements in list p * @param n Count of elements in list p
* @returns p if n==1 * @returns p if n==1
* @returns y if n!=1 * @returns y if n!=1
*/ */
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, std::complex<double> *InverseFastFourierTransform(std::complex<double> *p,
uint8_t n) { uint8_t n) {
if (n == 1) { if (n == 1) {
return p; /// Base Case To return return p; /// Base Case To return
} }
double pi = 2 * asin(1.0); /// Declaring value of pi double pi = 2 * asin(1.0); /// Declaring value of pi
std::complex<double> om = std::complex<double>( std::complex<double> om = std::complex<double>(
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
om.real(om.real() / n); /// One change in comparison with DFT om.real(om.real() / n); /// One change in comparison with DFT
om.imag(om.imag() / n); /// One change in comparison with DFT om.imag(om.imag() / n); /// One change in comparison with DFT
auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power
auto *po = new std::complex<double>[n / 2]; /// Coefficients of odd power auto *po = new std::complex<double>[n / 2]; /// Coefficients of odd power
int k1 = 0, k2 = 0; int k1 = 0, k2 = 0;
for (int j = 0; j < n; j++) { for (int j = 0; j < n; j++) {
if (j % 2 == 0) { if (j % 2 == 0) {
pe[k1++] = p[j]; /// Assigning values of even Coefficients pe[k1++] = p[j]; /// Assigning values of even Coefficients
} else { } else {
po[k2++] = p[j]; /// Assigning value of odd Coefficients po[k2++] = p[j]; /// Assigning value of odd Coefficients
} }
} }
std::complex<double> *ye = std::complex<double> *ye =
InverseFastFourierTransform(pe, n / 2); /// Recursive Call InverseFastFourierTransform(pe, n / 2); /// Recursive Call
std::complex<double> *yo = std::complex<double> *yo =
InverseFastFourierTransform(po, n / 2); /// Recursive Call InverseFastFourierTransform(po, n / 2); /// Recursive Call
auto *y = new std::complex<double>[n]; /// Final value representation list auto *y = new std::complex<double>[n]; /// Final value representation list
k1 = 0, k2 = 0; k1 = 0, k2 = 0;
for (int i = 0; i < n / 2; i++) { for (int i = 0; i < n / 2; i++) {
y[i] = y[i] =
ye[k1] + pow(om, i) * yo[k2]; /// Updating the first n/2 elements ye[k1] + pow(om, i) * yo[k2]; /// Updating the first n/2 elements
y[i + n / 2] = y[i + n / 2] =
ye[k1] - pow(om, i) * yo[k2]; /// Updating the last n/2 elements ye[k1] - pow(om, i) * yo[k2]; /// Updating the last n/2 elements
k1++; k1++;
k2++; k2++;
} }
if (n != 2) { if (n != 2) {
delete[] pe; delete[] pe;
delete[] po; delete[] po;
} }
delete[] ye; /// Deleting dynamic array ye delete[] ye; /// Deleting dynamic array ye
delete[] yo; /// Deleting dynamic array yo delete[] yo; /// Deleting dynamic array yo
return y; return y;
} }
} // namespace numerical_methods } // namespace numerical_methods
/** /**
* @brief Self-test implementations * @brief Self-test implementations
* @details * @details
* Declaring two test cases and checking for the error * Declaring two test cases and checking for the error
* in predicted and true value is less than 0.000000000001. * in predicted and true value is less than 0.000000000001.
* @returns void * @returns void
*/ */
static void test() { static void test() {
/* descriptions of the following test */ /* descriptions of the following test */
auto *t1 = new std::complex<double>[2]; /// Test case 1 auto *t1 = new std::complex<double>[2]; /// Test case 1
auto *t2 = new std::complex<double>[4]; /// Test case 2 auto *t2 = new std::complex<double>[4]; /// Test case 2
t1[0] = {3, 0}; t1[0] = {3, 0};
t1[1] = {-1, 0}; t1[1] = {-1, 0};
t2[0] = {10, 0}; t2[0] = {10, 0};
t2[1] = {-2, -2}; t2[1] = {-2, -2};
t2[2] = {-2, 0}; t2[2] = {-2, 0};
t2[3] = {-2, 2}; t2[3] = {-2, 2};
uint8_t n1 = 2; uint8_t n1 = 2;
uint8_t n2 = 4; uint8_t n2 = 4;
std::vector<std::complex<double>> r1 = { std::vector<std::complex<double>> r1 = {
{1, 0}, {2, 0}}; /// True Answer for test case 1 {1, 0}, {2, 0}}; /// True Answer for test case 1
std::vector<std::complex<double>> r2 = { std::vector<std::complex<double>> r2 = {
{1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2 {1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2
std::complex<double> *o1 = std::complex<double> *o1 =
numerical_methods::InverseFastFourierTransform(t1, n1); numerical_methods::InverseFastFourierTransform(t1, n1);
std::complex<double> *o2 = std::complex<double> *o2 =
numerical_methods::InverseFastFourierTransform(t2, n2); numerical_methods::InverseFastFourierTransform(t2, n2);
for (uint8_t i = 0; i < n1; i++) { for (uint8_t i = 0; i < n1; i++) {
assert((r1[i].real() - o1[i].real() < 0.000000000001) && assert((r1[i].real() - o1[i].real() < 0.000000000001) &&
(r1[i].imag() - o1[i].imag() < (r1[i].imag() - o1[i].imag() <
0.000000000001)); /// Comparing for both real and imaginary 0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 1 /// values for test case 1
} }
for (uint8_t i = 0; i < n2; i++) { for (uint8_t i = 0; i < n2; i++) {
assert((r2[i].real() - o2[i].real() < 0.000000000001) && assert((r2[i].real() - o2[i].real() < 0.000000000001) &&
(r2[i].imag() - o2[i].imag() < (r2[i].imag() - o2[i].imag() <
0.000000000001)); /// Comparing for both real and imaginary 0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 2 /// values for test case 2
} }
delete[] t1; delete[] t1;
delete[] t2; delete[] t2;
delete[] o1; delete[] o1;
delete[] o2; delete[] o2;
std::cout << "All tests have successfully passed!\n"; std::cout << "All tests have successfully passed!\n";
} }
/** /**
* @brief Main function * @brief Main function
* @param argc commandline argument count (ignored) * @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored) * @param argv commandline array of arguments (ignored)
* calls automated test function to test the working of fast fourier transform. * calls automated test function to test the working of fast fourier transform.
* @returns 0 on exit * @returns 0 on exit
*/ */
int main(int argc, char const *argv[]) { int main(int argc, char const *argv[]) {
test(); // run self-test implementations test(); // run self-test implementations
// with 2 defined test cases // with 2 defined test cases
return 0; return 0;
} }