diff --git a/dynamic_programming/0_1_knapsack.cpp b/dynamic_programming/0_1_knapsack.cpp index 4820c9ff1..8d08402e8 100644 --- a/dynamic_programming/0_1_knapsack.cpp +++ b/dynamic_programming/0_1_knapsack.cpp @@ -39,13 +39,13 @@ namespace dynamic_programming { namespace knapsack { /** * @brief Picking up all those items whose combined weight is below - * given capacity and calculating value of those picked items.Trying all + * the given capacity and calculating the value of those picked items. Trying all * possible combinations will yield the maximum knapsack value. * @tparam n size of the weight and value array * @param capacity capacity of the carrying bag - * @param weight array representing weight of items - * @param value array representing value of items - * @return maximum value obtainable with given capacity. + * @param weight array representing the weight of items + * @param value array representing the value of items + * @return maximum value obtainable with a given capacity. */ template int maxKnapsackValue(const int capacity, const std::array &weight, @@ -53,7 +53,7 @@ int maxKnapsackValue(const int capacity, const std::array &weight, std::vector > maxValue(n + 1, std::vector(capacity + 1, 0)); // outer loop will select no of items allowed - // inner loop will select capcity of knapsack bag + // inner loop will select the capacity of the knapsack bag int items = sizeof(weight) / sizeof(weight[0]); for (size_t i = 0; i < items + 1; ++i) { for (size_t j = 0; j < capacity + 1; ++j) { @@ -62,22 +62,22 @@ int maxKnapsackValue(const int capacity, const std::array &weight, // will be zero maxValue[i][j] = 0; } else if (weight[i - 1] <= j) { - // if the ith item's weight(in actual array it will be at i-1) + // if the ith item's weight(in the actual array it will be at i-1) // is less than or equal to the allowed weight i.e. j then we // can pick that item for our knapsack. maxValue will be the // obtained either by picking the current item or by not picking // current item - // picking current item + // picking the current item int profit1 = value[i - 1] + maxValue[i - 1][j - weight[i - 1]]; - // not picking current item + // not picking the current item int profit2 = maxValue[i - 1][j]; maxValue[i][j] = std::max(profit1, profit2); } else { - // as weight of current item is greater than allowed weight, so - // maxProfit will be profit obtained by excluding current item. + // as the weight of the current item is greater than the allowed weight, so + // maxProfit will be profit obtained by excluding the current item. maxValue[i][j] = maxValue[i - 1][j]; } } @@ -90,7 +90,7 @@ int maxKnapsackValue(const int capacity, const std::array &weight, } // namespace dynamic_programming /** - * @brief Function to test above algorithm + * @brief Function to test the above algorithm * @returns void */ static void test() { diff --git a/dynamic_programming/armstrong_number.cpp b/dynamic_programming/armstrong_number.cpp index 53f1be9fe..5f9a62f45 100644 --- a/dynamic_programming/armstrong_number.cpp +++ b/dynamic_programming/armstrong_number.cpp @@ -18,8 +18,8 @@ int main() { count++; } - /* Calaculation for checking of armstrongs number i.e. - in a n digit number sum of the digits raised to a power of n + /* Calculation for checking of armstrongs number i.e. + in an n-digit number sum of the digits is raised to a power of n is equal to the original number */ temp = n;