mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: add Boruvkas Algorithm (#1984)
* Boruvkas Algorithm Implementation Implemented Boruvkas Algorithm under graphs as a means for finding the minimums spanning tree * Boruvkas Algorithm Implementation Implemented Boruvkas algorithm, a greedy algorithm to find a graphs minimum spanning tree. * Update climits limits.h to climits Co-authored-by: David Leal <halfpacho@gmail.com> * Fixes for maintainability Made changes as recommended by Panquesito7 for maintainability and security * Fixed boruvkas main Made suggested changes Co-authored-by: David Leal <halfpacho@gmail.com> * Suggested changes for Boruvkas Changed from graph to greedy algorithm, removed the extra main(), general fixes * Update Boruvkas readability, CI Workflow General readability changes, change push_back to implace_back * Update Boruvkas memory allocation Added pre-allocation of memory for the parent vector of Boruvkas * Fixed file name, added namespace Fixed file name, added Boruvkas namespace, made suggested changes * Update boruvkas spacing Fixed spacing hopefully * Update boruvkas spacing Fixing weird tabs * Update Boruvkas tabs spacings Finally done with spacing i think * Boruvkas - Finished spacing Triplle checked tabs/spaces * chore: apply suggestions from code review * fix: CI issues (hopefully) * fix: last fix Co-authored-by: David Leal <halfpacho@gmail.com>
This commit is contained in:
parent
249ba8877d
commit
f093837c78
222
greedy_algorithms/boruvkas_minimum_spanning_tree.cpp
Normal file
222
greedy_algorithms/boruvkas_minimum_spanning_tree.cpp
Normal file
@ -0,0 +1,222 @@
|
||||
/**
|
||||
* @author [Jason Nardoni](https://github.com/JNardoni)
|
||||
* @file
|
||||
*
|
||||
* @brief
|
||||
* [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to find the Minimum Spanning Tree
|
||||
*
|
||||
*
|
||||
* @details
|
||||
* Boruvka's algorithm is a greepy algorithm to find the MST by starting with small trees, and combining
|
||||
* them to build bigger ones.
|
||||
* 1. Creates a group for every vertex.
|
||||
* 2. looks through each edge of every vertex for the smallest weight. Keeps track
|
||||
* of the smallest edge for each of the current groups.
|
||||
* 3. Combine each group with the group it shares its smallest edge, adding the smallest
|
||||
* edge to the MST.
|
||||
* 4. Repeat step 2-3 until all vertices are combined into a single group.
|
||||
*
|
||||
* It assumes that the graph is connected. Non-connected edges can be represented using 0 or INT_MAX
|
||||
*
|
||||
*/
|
||||
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <cassert> /// for assert
|
||||
#include <climits> /// for INT_MAX
|
||||
|
||||
/**
|
||||
* @namespace greedy_algorithms
|
||||
* @brief Greedy Algorithms
|
||||
*/
|
||||
namespace greedy_algorithms {
|
||||
/**
|
||||
* @namespace boruvkas_minimum_spanning_tree
|
||||
* @brief Functions for the [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation
|
||||
*/
|
||||
namespace boruvkas_minimum_spanning_tree {
|
||||
/**
|
||||
* @brief Recursively returns the vertex's parent at the root of the tree
|
||||
* @param parent the array that will be checked
|
||||
* @param v vertex to find parent of
|
||||
* @returns the parent of the vertex
|
||||
*/
|
||||
int findParent(std::vector<std::pair<int,int>> parent, const int v) {
|
||||
if (parent[v].first != v) {
|
||||
parent[v].first = findParent(parent, parent[v].first);
|
||||
}
|
||||
|
||||
return parent[v].first;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the implementation of boruvka's algorithm
|
||||
* @param adj a graph adjancency matrix stored as 2d vectors.
|
||||
* @returns the MST as 2d vectors
|
||||
*/
|
||||
std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
|
||||
size_t size = adj.size();
|
||||
size_t total_groups = size;
|
||||
|
||||
if (size <= 1) {
|
||||
return adj;
|
||||
}
|
||||
|
||||
// Stores the current Minimum Spanning Tree. As groups are combined, they are added to the MST
|
||||
std::vector<std::vector<int>> MST(size, std::vector<int>(size, INT_MAX));
|
||||
for (int i = 0; i < size; i++) {
|
||||
MST[i][i] = 0;
|
||||
}
|
||||
|
||||
// Step 1: Create a group for each vertex
|
||||
|
||||
// Stores the parent of the vertex and its current depth, both initialized to 0
|
||||
std::vector<std::pair<int, int>> parent(size, std::make_pair(0, 0));
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
parent[i].first = i; // Sets parent of each vertex to itself, depth remains 0
|
||||
}
|
||||
|
||||
// Repeat until all are in a single group
|
||||
while (total_groups > 1) {
|
||||
|
||||
std::vector<std::pair<int,int>> smallest_edge(size, std::make_pair(-1, -1)); //Pairing: start node, end node
|
||||
|
||||
// Step 2: Look throught each vertex for its smallest edge, only using the right half of the adj matrix
|
||||
for (int i = 0; i < size; i++) {
|
||||
for (int j = i+1; j < size; j++) {
|
||||
|
||||
if (adj[i][j] == INT_MAX || adj[i][j] == 0) { // No connection
|
||||
continue;
|
||||
}
|
||||
|
||||
// Finds the parents of the start and end points to make sure they arent in the same group
|
||||
int parentA = findParent(parent, i);
|
||||
int parentB = findParent(parent, j);
|
||||
|
||||
if (parentA != parentB) {
|
||||
|
||||
// Grabs the start and end points for the first groups current smallest edge
|
||||
int start = smallest_edge[parentA].first;
|
||||
int end = smallest_edge[parentA].second;
|
||||
|
||||
// If there is no current smallest edge, or the new edge is smaller, records the new smallest
|
||||
if (start == -1 || adj [i][j] < adj[start][end]) {
|
||||
smallest_edge[parentA].first = i;
|
||||
smallest_edge[parentA].second = j;
|
||||
}
|
||||
|
||||
// Does the same for the second group
|
||||
start = smallest_edge[parentB].first;
|
||||
end = smallest_edge[parentB].second;
|
||||
|
||||
if (start == -1 || adj[j][i] < adj[start][end]) {
|
||||
smallest_edge[parentB].first = j;
|
||||
smallest_edge[parentB].second = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Step 3: Combine the groups based off their smallest edge
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
|
||||
// Makes sure the smallest edge exists
|
||||
if (smallest_edge[i].first != -1) {
|
||||
|
||||
// Start and end points for the groups smallest edge
|
||||
int start = smallest_edge[i].first;
|
||||
int end = smallest_edge[i].second;
|
||||
|
||||
// Parents of the two groups - A is always itself
|
||||
int parentA = i;
|
||||
int parentB = findParent(parent, end);
|
||||
|
||||
// Makes sure the two nodes dont share the same parent. Would happen if the two groups have been
|
||||
//merged previously through a common shortest edge
|
||||
if (parentA == parentB) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Tries to balance the trees as much as possible as they are merged. The parent of the shallower
|
||||
//tree will be pointed to the parent of the deeper tree.
|
||||
if (parent[parentA].second < parent[parentB].second) {
|
||||
parent[parentB].first = parentA; //New parent
|
||||
parent[parentB].second++; //Increase depth
|
||||
}
|
||||
else {
|
||||
parent[parentA].first = parentB;
|
||||
parent[parentA].second++;
|
||||
}
|
||||
// Add the connection to the MST, using both halves of the adj matrix
|
||||
MST[start][end] = adj[start][end];
|
||||
MST[end][start] = adj[end][start];
|
||||
total_groups--; // one fewer group
|
||||
}
|
||||
}
|
||||
}
|
||||
return MST;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief counts the sum of edges in the given tree
|
||||
* @param adj 2D vector adjacency matrix
|
||||
* @returns the int size of the tree
|
||||
*/
|
||||
int test_findGraphSum(std::vector<std::vector<int>> adj) {
|
||||
|
||||
size_t size = adj.size();
|
||||
int sum = 0;
|
||||
|
||||
//Moves through one side of the adj matrix, counting the sums of each edge
|
||||
for (int i = 0; i < size; i++) {
|
||||
for (int j = i + 1; j < size; j++) {
|
||||
if (adj[i][j] < INT_MAX) {
|
||||
sum += adj[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
} // namespace boruvkas_minimum_spanning_tree
|
||||
} // namespace greedy_algorithms
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void tests() {
|
||||
std::cout << "Starting tests...\n\n";
|
||||
std::vector<std::vector<int>> graph = {
|
||||
{0, 5, INT_MAX, 3, INT_MAX} ,
|
||||
{5, 0, 2, INT_MAX, 5} ,
|
||||
{INT_MAX, 2, 0, INT_MAX, 3} ,
|
||||
{3, INT_MAX, INT_MAX, 0, INT_MAX} ,
|
||||
{INT_MAX, 5, 3, INT_MAX, 0} ,
|
||||
};
|
||||
std::vector<std::vector<int>> MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 13);
|
||||
std::cout << "1st test passed!" << std::endl;
|
||||
|
||||
graph = {
|
||||
{ 0, 2, 0, 6, 0 },
|
||||
{ 2, 0, 3, 8, 5 },
|
||||
{ 0, 3, 0, 0, 7 },
|
||||
{ 6, 8, 0, 0, 9 },
|
||||
{ 0, 5, 7, 9, 0 }
|
||||
};
|
||||
MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 16);
|
||||
std::cout << "2nd test passed!" << std::endl;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
tests(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user