mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #917 from kvedala/hill_cipher
[feature] Hill cipher algorithm
This commit is contained in:
commit
f16093cf7b
@ -68,6 +68,7 @@ endif()
|
||||
add_subdirectory(math)
|
||||
add_subdirectory(others)
|
||||
add_subdirectory(search)
|
||||
add_subdirectory(ciphers)
|
||||
add_subdirectory(strings)
|
||||
add_subdirectory(sorting)
|
||||
add_subdirectory(geometry)
|
||||
|
@ -10,6 +10,9 @@
|
||||
* [Rat Maze](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/rat_maze.cpp)
|
||||
* [Sudoku Solve](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/backtracking/sudoku_solve.cpp)
|
||||
|
||||
## Ciphers
|
||||
* [Hill Cipher](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/ciphers/hill_cipher.cpp)
|
||||
|
||||
## Data Structures
|
||||
* [Avltree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/avltree.cpp)
|
||||
* [Binary Search Tree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/binary_search_tree.cpp)
|
||||
|
18
ciphers/CMakeLists.txt
Normal file
18
ciphers/CMakeLists.txt
Normal file
@ -0,0 +1,18 @@
|
||||
# If necessary, use the RELATIVE flag, otherwise each source file may be listed
|
||||
# with full pathname. RELATIVE may makes it easier to extract an executable name
|
||||
# automatically.
|
||||
file( GLOB APP_SOURCES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.cpp )
|
||||
# file( GLOB APP_SOURCES ${CMAKE_SOURCE_DIR}/*.c )
|
||||
# AUX_SOURCE_DIRECTORY(${CMAKE_CURRENT_SOURCE_DIR} APP_SOURCES)
|
||||
foreach( testsourcefile ${APP_SOURCES} )
|
||||
# I used a simple string replace, to cut off .cpp.
|
||||
string( REPLACE ".cpp" "" testname ${testsourcefile} )
|
||||
add_executable( ${testname} ${testsourcefile} )
|
||||
|
||||
set_target_properties(${testname} PROPERTIES LINKER_LANGUAGE CXX)
|
||||
if(OpenMP_CXX_FOUND)
|
||||
target_link_libraries(${testname} OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
install(TARGETS ${testname} DESTINATION "bin/ciphers")
|
||||
|
||||
endforeach( testsourcefile ${APP_SOURCES} )
|
543
ciphers/hill_cipher.cpp
Normal file
543
ciphers/hill_cipher.cpp
Normal file
@ -0,0 +1,543 @@
|
||||
/**
|
||||
* @file hill_cipher.cpp
|
||||
* @brief Implementation of [Hill
|
||||
* cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm.
|
||||
*
|
||||
* Program to generate the encryption-decryption key and perform encryption and
|
||||
* decryption of ASCII text using the famous block cipher algorithm. This is a
|
||||
* powerful encryption algorithm that is relatively easy to implement with a
|
||||
* given key. The strength of the algorithm depends on the size of the block
|
||||
* encryption matrix key; the bigger the matrix, the stronger the encryption and
|
||||
* more difficult to break it. However, the important requirement for the matrix
|
||||
* is that:
|
||||
* 1. matrix should be invertible - all inversion conditions should be satisfied
|
||||
* and
|
||||
* 2. its determinant must not have any common factors with the length of
|
||||
* character set
|
||||
* Due to this restriction, most implementations only implement with small 3x3
|
||||
* encryption keys and a small subset of ASCII alphabets.
|
||||
*
|
||||
* In the current implementation, I present to you an implementation for
|
||||
* generating larger encryption keys (I have attempted upto 10x10) and an ASCII
|
||||
* character set of 97 printable characters. Hence, a typical ASCII text file
|
||||
* could be easily encrypted with the module. The larger character set increases
|
||||
* the modulo of cipher and hence the matrix determinants can get very large
|
||||
* very quickly rendering them ill-defined.
|
||||
*
|
||||
* \note This program uses determinant computation using LU decomposition from
|
||||
* the file lu_decomposition.h
|
||||
* \note The matrix generation algorithm is very rudimentary and does not
|
||||
* guarantee an invertible modulus matrix. \todo Better matrix generation
|
||||
* algorithm.
|
||||
*
|
||||
* @author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#include "../numerical_methods/lu_decomposition.h"
|
||||
|
||||
/**
|
||||
* operator to print a matrix
|
||||
*/
|
||||
template <typename T>
|
||||
static std::ostream &operator<<(std::ostream &out, matrix<T> const &v) {
|
||||
const int width = 15;
|
||||
const char separator = ' ';
|
||||
|
||||
for (size_t row = 0; row < v.size(); row++) {
|
||||
for (size_t col = 0; col < v[row].size(); col++)
|
||||
out << std::left << std::setw(width) << std::setfill(separator)
|
||||
<< v[row][col];
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/** \namespace ciphers
|
||||
* \brief Algorithms for encryption and decryption
|
||||
*/
|
||||
namespace ciphers {
|
||||
/** dictionary of characters that can be encrypted and decrypted */
|
||||
static const char *STRKEY =
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789~!@#$%^&"
|
||||
"*()_+`-=[]{}|;':\",./<>?\\\r\n \0";
|
||||
|
||||
/**
|
||||
* @brief Implementation of [Hill
|
||||
* Cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm
|
||||
*/
|
||||
class HillCipher {
|
||||
private:
|
||||
/**
|
||||
* @brief Function to generate a random integer in a given interval
|
||||
*
|
||||
* @param a lower limit of interval
|
||||
* @param b upper limit of interval
|
||||
* @tparam T type of output
|
||||
* @return random integer in the interval \f$[a,b)\f$
|
||||
*/
|
||||
template <typename T1, typename T2>
|
||||
static const T2 rand_range(T1 a, T1 b) {
|
||||
// generate random number between 0 and 1
|
||||
long double r = static_cast<long double>(std::rand()) / RAND_MAX;
|
||||
|
||||
// scale and return random number as integer
|
||||
return static_cast<T2>(r * (b - a) + a);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Function overload to fill a matrix with random integers in a given
|
||||
* interval
|
||||
*
|
||||
* @param M pointer to matrix to be filled with random numbers
|
||||
* @param a lower limit of interval
|
||||
* @param b upper limit of interval
|
||||
* @tparam T1 type of input range
|
||||
* @tparam T2 type of matrix
|
||||
* @return determinant of generated random matrix
|
||||
*
|
||||
* @warning There will need to be a balance between the matrix size and the
|
||||
* range of random numbers. If the matrix is large, the range of random
|
||||
* numbers must be small to have a well defined keys. Or if the matrix is
|
||||
* smaller, the random numbers range can be larger. For an 8x8 matrix, range
|
||||
* should be no more than \f$[0,10]\f$
|
||||
*/
|
||||
template <typename T1, typename T2>
|
||||
static double rand_range(matrix<T2> *M, T1 a, T1 b) {
|
||||
for (size_t i = 0; i < M->size(); i++) {
|
||||
for (size_t j = 0; j < M[0][0].size(); j++) {
|
||||
M[0][i][j] = rand_range<T1, T2>(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
return determinant_lu(*M);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute
|
||||
* [GCD](https://en.wikipedia.org/wiki/Greatest_common_divisor) of two
|
||||
* integers using Euler's algorithm
|
||||
*
|
||||
* @param a first number
|
||||
* @param b second number
|
||||
* @return GCD of \f$a\f$ and \f$b\f$
|
||||
*/
|
||||
template <typename T>
|
||||
static const T gcd(T a, T b) {
|
||||
if (b > a) // ensure always a < b
|
||||
std::swap(a, b);
|
||||
|
||||
while (b != 0) {
|
||||
T tmp = b;
|
||||
b = a % b;
|
||||
a = tmp;
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief helper function to perform vector multiplication with encryption
|
||||
* or decryption matrix
|
||||
*
|
||||
* @param vector vector to multiply
|
||||
* @param key encryption or decryption key matrix
|
||||
* @return corresponding encrypted or decrypted text
|
||||
*/
|
||||
static const std::valarray<uint8_t> mat_mul(
|
||||
const std::valarray<uint8_t> &vector, const matrix<int> &key) {
|
||||
std::valarray<uint8_t> out(vector); // make a copy
|
||||
|
||||
size_t L = std::strlen(STRKEY);
|
||||
|
||||
for (size_t i = 0; i < key.size(); i++) {
|
||||
int tmp = 0;
|
||||
for (size_t j = 0; j < vector.size(); j++) {
|
||||
tmp += key[i][j] * vector[j];
|
||||
}
|
||||
out[i] = static_cast<uint8_t>(tmp % L);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the character at a given index in the ::STRKEY
|
||||
*
|
||||
* @param idx index value
|
||||
* @return character at the index
|
||||
*/
|
||||
static inline char get_idx_char(const uint8_t idx) { return STRKEY[idx]; }
|
||||
|
||||
/**
|
||||
* @brief Get the index of a character in the ::STRKEY
|
||||
*
|
||||
* @param ch character to search
|
||||
* @return index of character
|
||||
*/
|
||||
static inline uint8_t get_char_idx(const char ch) {
|
||||
size_t L = std::strlen(STRKEY);
|
||||
|
||||
for (size_t idx = 0; idx <= L; idx++)
|
||||
if (STRKEY[idx] == ch)
|
||||
return idx;
|
||||
|
||||
std::cerr << __func__ << ":" << __LINE__ << ": (" << ch
|
||||
<< ") Should not reach here!\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convenience function to perform block cipher operations. The
|
||||
* operations are identical for both encryption and decryption.
|
||||
*
|
||||
* @param text input text to encrypt or decrypt
|
||||
* @param key key for encryption or decryption
|
||||
* @return encrypted/decrypted output
|
||||
*/
|
||||
static const std::string codec(const std::string &text,
|
||||
const matrix<int> &key) {
|
||||
size_t text_len = text.length();
|
||||
size_t key_len = key.size();
|
||||
|
||||
// length of output string must be a multiple of key_len
|
||||
// create output string and initialize with '\0' character
|
||||
size_t L2 = text_len % key_len == 0
|
||||
? text_len
|
||||
: text_len + key_len - (text_len % key_len);
|
||||
std::string coded_text(L2, '\0');
|
||||
|
||||
// temporary array for batch processing
|
||||
int i;
|
||||
#ifdef _OPENMP
|
||||
#pragma parallel omp for private(i)
|
||||
#endif
|
||||
for (i = 0; i < L2 - key_len + 1; i += key_len) {
|
||||
std::valarray<uint8_t> batch_int(key_len);
|
||||
for (size_t j = 0; j < key_len; j++) {
|
||||
batch_int[j] = get_char_idx(text[i + j]);
|
||||
}
|
||||
|
||||
batch_int = mat_mul(batch_int, key);
|
||||
|
||||
for (size_t j = 0; j < key_len; j++) {
|
||||
coded_text[i + j] =
|
||||
STRKEY[batch_int[j]]; // get character at key
|
||||
}
|
||||
}
|
||||
|
||||
return coded_text;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get matrix inverse using Row-transformations. Given matrix must
|
||||
* be a square and non-singular.
|
||||
* \returns inverse matrix
|
||||
**/
|
||||
template <typename T>
|
||||
static matrix<double> get_inverse(matrix<T> const &A) {
|
||||
// Assuming A is square matrix
|
||||
size_t N = A.size();
|
||||
|
||||
matrix<double> inverse(N, std::valarray<double>(N));
|
||||
for (size_t row = 0; row < N; row++) {
|
||||
for (size_t col = 0; col < N; col++) {
|
||||
// create identity matrix
|
||||
inverse[row][col] = (row == col) ? 1.f : 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
if (A.size() != A[0].size()) {
|
||||
std::cerr << "A must be a square matrix!" << std::endl;
|
||||
return inverse;
|
||||
}
|
||||
|
||||
// preallocate a temporary matrix identical to A
|
||||
matrix<double> temp(N, std::valarray<double>(N));
|
||||
for (size_t row = 0; row < N; row++) {
|
||||
for (size_t col = 0; col < N; col++)
|
||||
temp[row][col] = static_cast<double>(A[row][col]);
|
||||
}
|
||||
|
||||
// start transformations
|
||||
for (size_t row = 0; row < N; row++) {
|
||||
for (size_t row2 = row; row2 < N && temp[row][row] == 0; row2++) {
|
||||
// this to ensure diagonal elements are not 0
|
||||
temp[row] = temp[row] + temp[row2];
|
||||
inverse[row] = inverse[row] + inverse[row2];
|
||||
}
|
||||
|
||||
for (size_t col2 = row; col2 < N && temp[row][row] == 0; col2++) {
|
||||
// this to further ensure diagonal elements are not 0
|
||||
for (size_t row2 = 0; row2 < N; row2++) {
|
||||
temp[row2][row] = temp[row2][row] + temp[row2][col2];
|
||||
inverse[row2][row] =
|
||||
inverse[row2][row] + inverse[row2][col2];
|
||||
}
|
||||
}
|
||||
|
||||
if (temp[row][row] == 0) {
|
||||
// Probably a low-rank matrix and hence singular
|
||||
std::cerr << "Low-rank matrix, no inverse!" << std::endl;
|
||||
return inverse;
|
||||
}
|
||||
|
||||
// set diagonal to 1
|
||||
double divisor = temp[row][row];
|
||||
temp[row] = temp[row] / divisor;
|
||||
inverse[row] = inverse[row] / divisor;
|
||||
// Row transformations
|
||||
for (size_t row2 = 0; row2 < N; row2++) {
|
||||
if (row2 == row)
|
||||
continue;
|
||||
double factor = temp[row2][row];
|
||||
temp[row2] = temp[row2] - factor * temp[row];
|
||||
inverse[row2] = inverse[row2] - factor * inverse[row];
|
||||
}
|
||||
}
|
||||
|
||||
return inverse;
|
||||
}
|
||||
|
||||
static int modulo(int a, int b) {
|
||||
int ret = a % b;
|
||||
if (ret < 0)
|
||||
ret += b;
|
||||
return ret;
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Generate encryption matrix of a given size. Larger size matrices
|
||||
* are difficult to generate but provide more security. Important conditions
|
||||
* are:
|
||||
* 1. matrix should be invertible
|
||||
* 2. determinant must not have any common factors with the length of
|
||||
* character key
|
||||
* There is no head-fast way to generate hte matrix under the given
|
||||
* numerical restrictions of the machine but the conditions added achieve
|
||||
* the goals. Bigger the matrix, greater is the probability of the matrix
|
||||
* being ill-defined.
|
||||
*
|
||||
* @param size size of matrix (typically \f$\text{size}\le10\f$)
|
||||
* @param limit1 lower limit of range of random elements (default=0)
|
||||
* @param limit2 upper limit of range of random elements (default=10)
|
||||
* @return Encryption martix
|
||||
*/
|
||||
static matrix<int> generate_encryption_key(size_t size, int limit1 = 0,
|
||||
int limit2 = 10) {
|
||||
matrix<int> encrypt_key(size, std::valarray<int>(size));
|
||||
matrix<int> min_mat = encrypt_key;
|
||||
int mat_determinant = -1; // because matrix has only ints, the
|
||||
// determinant will also be an int
|
||||
int L = std::strlen(STRKEY);
|
||||
|
||||
double dd;
|
||||
do {
|
||||
// keeping the random number range smaller generates better
|
||||
// defined matrices with more ease of cracking
|
||||
dd = rand_range(&encrypt_key, limit1, limit2);
|
||||
mat_determinant = static_cast<int>(dd);
|
||||
|
||||
if (mat_determinant < 0)
|
||||
mat_determinant = (mat_determinant % L);
|
||||
} while (std::abs(dd) > 1e3 || // while ill-defined
|
||||
dd < 0.1 || // while singular or negative determinant
|
||||
!std::isfinite(dd) || // while determinant is not finite
|
||||
gcd(mat_determinant, L) != 1); // while no common factors
|
||||
// std::cout <<
|
||||
|
||||
return encrypt_key;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generate decryption matrix from an encryption matrix key.
|
||||
*
|
||||
* @param encrypt_key encryption key for which to create a decrypt key
|
||||
* @return Decryption martix
|
||||
*/
|
||||
static matrix<int> generate_decryption_key(matrix<int> const &encrypt_key) {
|
||||
size_t size = encrypt_key.size();
|
||||
int L = std::strlen(STRKEY);
|
||||
|
||||
matrix<int> decrypt_key(size, std::valarray<int>(size));
|
||||
int det_encrypt = static_cast<int>(determinant_lu(encrypt_key));
|
||||
|
||||
int mat_determinant = det_encrypt < 0 ? det_encrypt % L : det_encrypt;
|
||||
|
||||
matrix<double> tmp_inverse = get_inverse(encrypt_key);
|
||||
double d2 = determinant_lu(decrypt_key);
|
||||
|
||||
// find co-prime factor for inversion
|
||||
int det_inv = -1;
|
||||
for (int i = 0; i < L; i++) {
|
||||
if (modulo(mat_determinant * i, L) == 1) {
|
||||
det_inv = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (det_inv == -1) {
|
||||
std::cerr << "Could not find a co-prime for inversion\n";
|
||||
std::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
mat_determinant = det_inv * det_encrypt;
|
||||
|
||||
// perform modular inverse of encryption matrix
|
||||
int i;
|
||||
#ifdef _OPENMP
|
||||
#pragma parallel omp for private(i)
|
||||
#endif
|
||||
for (i = 0; i < size; i++) {
|
||||
for (int j = 0; j < size; j++) {
|
||||
int temp = std::round(tmp_inverse[i][j] * mat_determinant);
|
||||
decrypt_key[i][j] = modulo(temp, L);
|
||||
}
|
||||
}
|
||||
return decrypt_key;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generate encryption and decryption key pair
|
||||
*
|
||||
* @param size size of matrix key (typically \f$\text{size}\le10\f$)
|
||||
* @param limit1 lower limit of range of random elements (default=0)
|
||||
* @param limit2 upper limit of range of random elements (default=10)
|
||||
* @return std::pair<matrix<int>, matrix<int>> encryption and decryption
|
||||
* keys as a pair
|
||||
*
|
||||
* @see ::generate_encryption_key
|
||||
*/
|
||||
static std::pair<matrix<int>, matrix<int>> generate_keys(size_t size,
|
||||
int limit1 = 0,
|
||||
int limit2 = 10) {
|
||||
matrix<int> encrypt_key = generate_encryption_key(size);
|
||||
matrix<int> decrypt_key = generate_decryption_key(encrypt_key);
|
||||
double det2 = determinant_lu(decrypt_key);
|
||||
while (std::abs(det2) < 0.1 || std::abs(det2) > 1e3) {
|
||||
encrypt_key = generate_encryption_key(size, limit1, limit2);
|
||||
decrypt_key = generate_decryption_key(encrypt_key);
|
||||
det2 = determinant_lu(decrypt_key);
|
||||
}
|
||||
return std::make_pair(encrypt_key, decrypt_key);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encrypt a given text using a given key
|
||||
*
|
||||
* @param text string to encrypt
|
||||
* @param encrypt_key key for encryption
|
||||
* @return encrypted text
|
||||
*/
|
||||
static const std::string encrypt_text(const std::string &text,
|
||||
const matrix<int> &encrypt_key) {
|
||||
return codec(text, encrypt_key);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Decrypt a given text using a given key
|
||||
*
|
||||
* @param text string to decrypt
|
||||
* @param decrypt_key key for decryption
|
||||
* @return decrypted text
|
||||
*/
|
||||
static const std::string decrypt_text(const std::string &text,
|
||||
const matrix<int> &decrypt_key) {
|
||||
return codec(text, decrypt_key);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ciphers
|
||||
|
||||
/**
|
||||
* @brief Self test 1 - using 3x3 randomly generated key
|
||||
*
|
||||
* @param text string to encrypt and decrypt
|
||||
*/
|
||||
void test1(const std::string &text) {
|
||||
// std::string text = "Hello world!";
|
||||
std::cout << "======Test 1 (3x3 key) ======\nOriginal text:\n\t" << text
|
||||
<< std::endl;
|
||||
|
||||
std::pair<matrix<int>, matrix<int>> p =
|
||||
ciphers::HillCipher::generate_keys(3, 0, 100);
|
||||
matrix<int> ekey = p.first;
|
||||
matrix<int> dkey = p.second;
|
||||
|
||||
// matrix<int> ekey = {{22, 28, 25}, {5, 26, 15}, {14, 18, 9}};
|
||||
// std::cout << "Encryption key: \n" << ekey;
|
||||
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
|
||||
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
|
||||
|
||||
// matrix<int> dkey = ciphers::HillCipher::generate_decryption_key(ekey);
|
||||
// std::cout << "Decryption key: \n" << dkey;
|
||||
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
|
||||
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
|
||||
|
||||
std::ofstream out_file("hill_cipher_test1.txt");
|
||||
out_file << "Block size: " << ekey.size() << "\n";
|
||||
out_file << "Encryption Key:\n" << ekey;
|
||||
out_file << "\nDecryption Key:\n" << dkey;
|
||||
out_file.close();
|
||||
|
||||
assert(txt_back == text);
|
||||
std::cout << "Passed :)\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Self test 2 - using 8x8 randomly generated key
|
||||
*
|
||||
* @param text string to encrypt and decrypt
|
||||
*/
|
||||
void test2(const std::string &text) {
|
||||
// std::string text = "Hello world!";
|
||||
std::cout << "======Test 2 (8x8 key) ======\nOriginal text:\n\t" << text
|
||||
<< std::endl;
|
||||
|
||||
std::pair<matrix<int>, matrix<int>> p =
|
||||
ciphers::HillCipher::generate_keys(8, 0, 3);
|
||||
matrix<int> ekey = p.first;
|
||||
matrix<int> dkey = p.second;
|
||||
|
||||
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
|
||||
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
|
||||
|
||||
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
|
||||
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
|
||||
|
||||
std::ofstream out_file("hill_cipher_test2.txt");
|
||||
out_file << "Block size: " << ekey.size() << "\n";
|
||||
out_file << "Encryption Key:\n" << ekey;
|
||||
out_file << "\nDecryption Key:\n" << dkey;
|
||||
out_file.close();
|
||||
|
||||
assert(txt_back.compare(0, text.size(), text) == 0);
|
||||
std::cout << "Passed :)\n";
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main() {
|
||||
std::srand(std::time(nullptr));
|
||||
std::cout << "Key dictionary: (" << std::strlen(ciphers::STRKEY) << ")\n\t"
|
||||
<< ciphers::STRKEY << "\n";
|
||||
|
||||
std::string text = "This is a simple text with numb3r5 and exclamat!0n.";
|
||||
|
||||
test1(text);
|
||||
test2(text);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user