docs improved

This commit is contained in:
foo290 2021-07-13 07:58:14 +05:30
parent 84866c04ad
commit f1b8319824
No known key found for this signature in database
GPG Key ID: 37349CBEF6299747

View File

@ -4,36 +4,33 @@
* search tree](https://www.youtube.com/watch?v=5cPbNCrdotA&t=904s) Inorder
* successor of a node is the next node in Inorder traversal of the Binary Tree.
* Inorder Successor is NULL for the last node in Inorder traversal.
*
* @details
* ### Case 1: The given node has the right node/subtree
*
* In this case the left most deepest node in the right subtree will come
* just after the given node as we go to left deep in inorder.
* In this case the left most deepest node in the right subtree will come just
* after the given node as we go to left deep in inorder.
* - Go deep to left most node in right subtree.
* OR, we can also say in case if BST, find the minimum of the subtree
* for a given node.
* OR, we can also say in case if BST, find the minimum of the subtree for a given node.
*
* ### Case 2: The given node does not have a right node/subtree
*
* #### Method 1: Use parent pointer (store the address of parent nodes)
* * If a node does not have right subtree, and we already visited the node
* itself, then the next node will be its parent node according to inorder
* traversal, and if we are going to parent from left, then the parent would be
* unvisited. In other words, go to the nearest ancestor for which given node
* would be in left subtree.
* * If a node does not have the right subtree, and we already visited the node itself,
* then the next node will be its parent node according to inorder traversal,
* and if we are going to parent from left, then the parent would be unvisited.
* * In other words, go to the nearest ancestor for which given node would be in left subtree.
*
* #### Method 2: Search from the root node
* * In case if there is no link to the parent, we need to walk the tree
* starting from the root node to the given node, by doing so, we are visiting
* every ancestor of the given node. In order successor would be the deepest
* node in this path for which given node is in left subtree.
* * In case if there is no link from a child node to the parent node, we need to walk down the tree starting
* from the root node to the given node, by doing so, we are visiting every ancestor of the given node.
* * In order successor would be the deepest node in this path for which given node is in left subtree.
*
* @author [Nitin Sharma](https://github.com/foo290)
* */
#include <cassert> /// For assert
#include <iostream> /// For IO Operations
#include <vector> /// For std::vector
#include <cassert> /// for assert
#include <iostream> /// for IO Operations
#include <vector> /// for std::vector
/**
* @namespace operations_on_datastructures
@ -46,30 +43,30 @@ namespace operations_on_datastructures {
* @brief Functions for the [Inorder successor of a binary search
* tree](https://www.youtube.com/watch?v=5cPbNCrdotA) implementation
*/
namespace inorder_traversal_of_bst {
namespace inorder_traversal_of_bst {
/**
* @brief A Node structure representing a single node in BST
*/
class Node {
public:
int64_t data; ///< The key/value of the node
Node *left; ///< Pointer to Left child
Node *right; ///< Pointer to right child
};
class Node {
public:
int64_t data; ///< The key/value of the node
Node *left; ///< Pointer to Left child
Node *right; ///< Pointer to right child
};
/**
* @brief Allocates a new node in heap for given data and returns it's pointer.
* @param data Data for the node.
* @returns A pointer to the newly allocated Node.
* */
Node *makeNode(int64_t data) {
Node *node = new Node();
node->data = data; ///< setting data for node
node->left = nullptr; ///< setting left child as null
node->right = nullptr; ///< setting right child as null
return node;
}
Node *makeNode(int64_t data) {
Node *node = new Node();
node->data = data; ///< setting data for node
node->left = nullptr; ///< setting left child as null
node->right = nullptr; ///< setting right child as null
return node;
}
/**
* @brief Inserts the given data in BST while maintaining the properties of BST.
@ -77,16 +74,16 @@ Node *makeNode(int64_t data) {
* @param data Data to be inserted.
* @returns Node* Pointer to the root node.
* */
Node *Insert(Node *root, int64_t data) {
if (root == nullptr) {
root = makeNode(data);
} else if (data <= root->data) {
root->left = Insert(root->left, data);
} else {
root->right = Insert(root->right, data);
}
return root;
}
Node *Insert(Node *root, int64_t data) {
if (root == nullptr) {
root = makeNode(data);
} else if (data <= root->data) {
root->left = Insert(root->left, data);
} else {
root->right = Insert(root->right, data);
}
return root;
}
/**
* @brief Searches the given data in BST and returns the pointer to the node
@ -95,49 +92,51 @@ Node *Insert(Node *root, int64_t data) {
* @param data Data to be Searched.
* @returns Node* pointer to the found node
* */
Node *getNode(Node *root, int64_t data) {
if (root == nullptr) {
return nullptr;
} else if (root->data == data) {
return root;
} else if (data > root->data) {
/// recursive call
return getNode(root->right, data);
} else {
/// recursive call
return getNode(root->left, data);
}
}
Node *getNode(Node *root, int64_t data) {
if (root == nullptr) {
return nullptr;
} else if (root->data == data) {
return root; /// Node found!
} else if (data > root->data) {
/// Traverse right subtree recursively as the given data is greater than the data in root node,
/// data must be present in right subtree.
return getNode(root->right, data);
} else {
/// Traverse left subtree recursively as the given data is less than the data in root node,
/// data must be present in left subtree.
return getNode(root->left, data);
}
}
/**
* @brief Finds and return the minimum node in BST.
* @param root A pointer to root node.
* @returns Node* Pointer to the found node
* */
Node *findMinNode(Node *root) {
if (root == nullptr) {
return root;
}
while (root->left != nullptr) {
root = root->left;
}
return root;
}
Node *findMinNode(Node *root) {
if (root == nullptr) {
return root;
}
while (root->left != nullptr) {
root = root->left;
}
return root;
}
/**
* @brief Prints the BST in inorder traversal using recursion.
* @param root A pointer to the root node of the BST.
* @returns void
* */
void printInorder(Node *root) {
if (root == nullptr) {
return;
}
void printInorder(Node *root) {
if (root == nullptr) {
return;
}
printInorder(root->left); /// recursive call to left subtree
std::cout << root->data << " ";
printInorder(root->right); /// recursive call to right subtree
}
printInorder(root->left); /// recursive call to left subtree
std::cout << root->data << " ";
printInorder(root->right); /// recursive call to right subtree
}
/**
* @brief This function is used in test cases to quickly create BST containing
@ -148,51 +147,53 @@ void printInorder(Node *root) {
* inserted as nodes in BST.
* @returns Node pointer to the root node.
* */
Node *makeBST(Node *root, const std::vector<int64_t> &data) {
for (int64_t values : data) {
root = Insert(root, values);
}
return root;
}
Node *makeBST(Node *root, const std::vector<int64_t> &data) {
for (int64_t values : data) {
root = Insert(root, values);
}
return root;
}
/**
* @brief Search from the root node as we need to walk the tree starting from
* @brief Inorder successor of a node is the next node in inorder traversal of the Binary Tree.
* This function takes the root node and the data of the node for which we have to find the inorder successor, and
* returns the inorder successor node.
* @details Search from the root node as we need to walk the tree starting from
* the root node to the given node, by doing so, we are visiting every ancestor
* of the given node. In order successor would be the deepest node in this path
* for which given node is in left subtree. Time complexity O(h)
*
* @param root A pointer to the root node of the BST
* @param data The data (or the data of node) for which we have to find inorder
* successor.
* @returns Node pointer to the inorder successor node.
* */
Node *getInorderSuccessor(Node *root, int64_t data) {
Node *current = getNode(root, data);
if (current == nullptr) {
return nullptr;
}
Node *getInorderSuccessor(Node *root, int64_t data) {
Node *current = getNode(root, data);
if (current == nullptr) {
return nullptr;
}
// Case - 1
if (current->right != nullptr) {
return findMinNode(current->right);
}
// case - 2
else {
Node *successor = nullptr;
Node *ancestor = root;
// Case - 1
if (current->right != nullptr) {
return findMinNode(current->right);
}
// case - 2
else {
Node *successor = nullptr;
Node *ancestor = root;
while (ancestor != current && ancestor != nullptr) {
// This means my current node is in left of the root node
if (current->data < ancestor->data) {
successor = ancestor;
ancestor = ancestor->left; // keep going left
} else {
ancestor = ancestor->right;
while (ancestor != current && ancestor != nullptr) {
// This means my current node is in left of the root node
if (current->data < ancestor->data) {
successor = ancestor;
ancestor = ancestor->left; // keep going left
} else {
ancestor = ancestor->right;
}
}
return successor; // Nodes with maximum vales will not have a successor
}
}
return successor; // Nodes with maximum vales will not have a successor
}
}
} // namespace inorder_traversal_of_bst
} // namespace operations_on_datastructures
@ -200,7 +201,7 @@ Node *getInorderSuccessor(Node *root, int64_t data) {
* @brief class encapsulating the necessary test cases
*/
class TestCases {
private:
private:
/**
* @brief A function to print given message on console.
* @tparam T Type of the given message.
@ -212,7 +213,7 @@ class TestCases {
std::cout << "[TESTS] : ---> " << msg << std::endl;
}
public:
public:
/**
* @brief Executes test cases
* @returns void
@ -235,7 +236,7 @@ class TestCases {
* */
void testCase_1() {
const operations_on_datastructures::inorder_traversal_of_bst::Node
*expectedOutput = nullptr; ///< Expected output of this test
*expectedOutput = nullptr; ///< Expected output of this test
log("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
log("This is test case 1 : ");
@ -244,23 +245,23 @@ class TestCases {
"BST, Output will be nullptr.");
operations_on_datastructures::inorder_traversal_of_bst::Node *root =
nullptr;
nullptr;
std::vector<int64_t> node_data{
20, 3, 5, 6, 2, 23, 45, 78, 21}; ///< Data to make nodes in BST
20, 3, 5, 6, 2, 23, 45, 78, 21}; ///< Data to make nodes in BST
root = operations_on_datastructures::inorder_traversal_of_bst::makeBST(
root,
node_data); ///< Adding nodes to BST
root,
node_data); ///< Adding nodes to BST
std::cout << "Inorder sequence is : ";
operations_on_datastructures::inorder_traversal_of_bst::printInorder(
root); ///< Printing inorder to cross-verify.
root); ///< Printing inorder to cross-verify.
std::cout << std::endl;
operations_on_datastructures::inorder_traversal_of_bst::Node
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(
root, 78); ///< The inorder successor node for given data
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(
root, 78); ///< The inorder successor node for given data
log("Checking assert expression...");
assert(inorderSuccessor == expectedOutput);
@ -285,23 +286,23 @@ class TestCases {
log("This is test case 2 : ");
operations_on_datastructures::inorder_traversal_of_bst::Node *root =
nullptr;
nullptr;
std::vector<int64_t> node_data{
20, 3, 5, 6, 2, 23, 45, 78, 21}; ///< Data to make nodes in BST
20, 3, 5, 6, 2, 23, 45, 78, 21}; ///< Data to make nodes in BST
root = operations_on_datastructures::inorder_traversal_of_bst::makeBST(
root,
node_data); ///< Adding nodes to BST
root,
node_data); ///< Adding nodes to BST
std::cout << "Inorder sequence is : ";
operations_on_datastructures::inorder_traversal_of_bst::printInorder(
root); ///< Printing inorder to cross-verify.
root); ///< Printing inorder to cross-verify.
std::cout << std::endl;
operations_on_datastructures::inorder_traversal_of_bst::Node
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(
root, 20); ///< The inorder successor node for given data
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(
root, 20); ///< The inorder successor node for given data
log("Checking assert expression...");
assert(inorderSuccessor->data == expectedOutput);
@ -326,24 +327,24 @@ class TestCases {
log("This is test case 3 : ");
operations_on_datastructures::inorder_traversal_of_bst::Node *root =
nullptr;
nullptr;
std::vector<int64_t> node_data{
89, 67, 32, 56, 90, 123, 120,
110, 115, 6, 78, 7, 10}; ///< Data to make nodes in BST
89, 67, 32, 56, 90, 123, 120,
110, 115, 6, 78, 7, 10}; ///< Data to make nodes in BST
root = operations_on_datastructures::inorder_traversal_of_bst::makeBST(
root,
node_data); ///< Adding nodes to BST
root,
node_data); ///< Adding nodes to BST
std::cout << "Inorder sequence is : ";
operations_on_datastructures::inorder_traversal_of_bst::printInorder(
root); ///< Printing inorder to cross-verify.
root); ///< Printing inorder to cross-verify.
std::cout << std::endl;
operations_on_datastructures::inorder_traversal_of_bst::Node
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(
root, 90); ///< The inorder successor node for given data
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(
root, 90); ///< The inorder successor node for given data
log("Checking assert expression...");
assert(inorderSuccessor->data == expectedOutput);
@ -376,17 +377,17 @@ int main(int argc, char *argv[]) {
test(); // run self-test implementations
operations_on_datastructures::inorder_traversal_of_bst::Node *root =
nullptr; ///< root node of the bst
nullptr; ///< root node of the bst
std::vector<int64_t> node_data{3, 4, 5,
89, 1, 2}; ///< Data to add nodes in BST
int64_t targetElement = 4; ///< An element to find inorder successor for.
root = operations_on_datastructures::inorder_traversal_of_bst::makeBST(
root, node_data); ///< Making BST
root, node_data); ///< Making BST
operations_on_datastructures::inorder_traversal_of_bst::Node
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(root, targetElement);
*inorderSuccessor = operations_on_datastructures::
inorder_traversal_of_bst::getInorderSuccessor(root, targetElement);
std::cout << "In-order sequence is : ";
operations_on_datastructures::inorder_traversal_of_bst::printInorder(root);