/****************************************************************************** * @file * @brief Implementation of the [Convex * Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham * Scan](https://en.wikipedia.org/wiki/Graham_scan) * @details * In geometry, the convex hull or convex envelope or convex closure of a shape * is the smallest convex set that contains it. The convex hull may be defined * either as the intersection of all convex sets containing a given subset of a * Euclidean space, or equivalently as the set of all convex combinations of * points in the subset. For a bounded subset of the plane, the convex hull may * be visualized as the shape enclosed by a rubber band stretched around the * subset. * * The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using * Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time. * * ### Implementation * * Sort points * We first find the bottom-most point. The idea is to pre-process * points be sorting them with respect to the bottom-most point. Once the points * are sorted, they form a simple closed path. * The sorting criteria is to use the orientation to compare angles without * actually computing them (See the compare() function below) because * computation of actual angles would be inefficient since trigonometric * functions are not simple to evaluate. * * Accept or Reject Points * Once we have the closed path, the next step is to traverse the path and * remove concave points on this path using orientation. The first two points in * sorted array are always part of Convex Hull. For remaining points, we keep * track of recent three points, and find the angle formed by them. Let the * three points be prev(p), curr(c) and next(n). If orientation of these points * (considering them in same order) is not counterclockwise, we discard c, * otherwise we keep it. * * @author [Lajat Manekar](https://github.com/Lazeeez) * *******************************************************************************/ #include /// for std::swap #include /// for mathematics and datatype conversion #include /// for IO operations #include /// for std::stack #include /// for std::vector /****************************************************************************** * @namespace geometry * @brief geometric algorithms *******************************************************************************/ namespace geometry { /****************************************************************************** * @namespace graham scan * @brief convex hull algorithm *******************************************************************************/ namespace grahamscan { /****************************************************************************** * @struct Point * @brief for X and Y co-ordinates of the co-ordinate. *******************************************************************************/ struct Point { int x, y; }; // A global point needed for sorting points with reference // to the first point Used in compare function of qsort() Point p0; /****************************************************************************** * @brief A utility function to find next to top in a stack. * @param S Stack to be used for the process. * @returns @param Point Co-ordinates of the Point *******************************************************************************/ Point nextToTop(std::stack *S) { Point p = S->top(); S->pop(); Point res = S->top(); S->push(p); return res; } /****************************************************************************** * @brief A utility function to return square of distance between p1 and p2. * @param p1 Co-ordinates of Point 1 . * @param p2 Co-ordinates of Point 2 . * @returns @param int distance between p1 and p2. *******************************************************************************/ int distSq(Point p1, Point p2) { return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } /****************************************************************************** * @brief To find orientation of ordered triplet (p, q, r). * @param p Co-ordinates of Point p . * @param q Co-ordinates of Point q . * @param r Co-ordinates of Point r . * @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise, * 2 --> Counterclockwise *******************************************************************************/ int orientation(Point p, Point q, Point r) { int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); if (val == 0) { return 0; // collinear } return (val > 0) ? 1 : 2; // clock or counter-clock wise } /****************************************************************************** * @brief A function used by library function qsort() to sort an array of * points with respect to the first point * @param vp1 Co-ordinates of Point 1 . * @param vp2 Co-ordinates of Point 2 . * @returns @param int distance between p1 and p2. *******************************************************************************/ int compare(const void *vp1, const void *vp2) { auto *p1 = static_cast(vp1); auto *p2 = static_cast(vp2); // Find orientation int o = orientation(p0, *p1, *p2); if (o == 0) { return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1; } return (o == 2) ? -1 : 1; } /****************************************************************************** * @brief Prints convex hull of a set of n points. * @param points vector of Point with co-ordinates. * @param size Size of the vector. * @returns @param vector vector of Conver Hull. *******************************************************************************/ std::vector convexHull(std::vector points, uint64_t size) { // Find the bottom-most point int ymin = points[0].y, min = 0; for (int i = 1; i < size; i++) { int y = points[i].y; // Pick the bottom-most or chose the left-most point in case of tie if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) { ymin = points[i].y, min = i; } } // Place the bottom-most point at first position std::swap(points[0], points[min]); // Sort n-1 points with respect to the first point. A point p1 comes // before p2 in sorted output if p2 has larger polar angle // (in counterclockwise direction) than p1. p0 = points[0]; qsort(&points[1], size - 1, sizeof(Point), compare); // If two or more points make same angle with p0, Remove all but the one // that is farthest from p0 Remember that, in above sorting, our criteria // was to keep the farthest point at the end when more than one points have // same angle. int m = 1; // Initialize size of modified array for (int i = 1; i < size; i++) { // Keep removing i while angle of i and i+1 is same with respect to p0 while (i < size - 1 && orientation(p0, points[i], points[i + 1]) == 0) { i++; } points[m] = points[i]; m++; // Update size of modified array } // If modified array of points has less than 3 points, convex hull is not // possible if (m < 3) { return {}; }; // Create an empty stack and push first three points to it. std::stack St; St.push(points[0]); St.push(points[1]); St.push(points[2]); // Process remaining n-3 points for (int i = 3; i < m; i++) { // Keep removing top while the angle formed by // points next-to-top, top, and points[i] makes // a non-left turn while (St.size() > 1 && orientation(nextToTop(&St), St.top(), points[i]) != 2) { St.pop(); } St.push(points[i]); } std::vector result; // Now stack has the output points, push them into the resultant vector while (!St.empty()) { Point p = St.top(); result.push_back(p); St.pop(); } return result; // return resultant vector with Convex Hull co-ordinates. } } // namespace grahamscan } // namespace geometry