/** * @file * @brief [A fast Fourier transform * (FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f) * is an algorithm that computes the * discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). * @details * This * algorithm has application in use case scenario where a user wants to find points of a * function * in a short time by just using the coefficients of the polynomial * function. * It can be also used to find inverse fourier transform by just switching the value of omega. * Time complexity * this algorithm computes the DFT in O(nlogn) time in comparison to traditional O(n^2). * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) */ #include /// for assert #include /// for mathematical-related functions #include /// for storing points and coefficents #include /// for IO operations #include /// for std::vector /** * @namespace numerical_methods * @brief Numerical algorithms/methods */ namespace numerical_methods { /** * @brief FastFourierTransform is a recursive function which returns list of * complex numbers * @param p List of Coefficents in form of complex numbers * @param n Count of elements in list p * @returns p if n==1 * @returns y if n!=1 */ std::complex *FastFourierTransform(std::complex *p, uint8_t n) { if (n == 1) { return p; /// Base Case To return } double pi = 2 * asin(1.0); /// Declaring value of pi std::complex om = std::complex( cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega auto *pe = new std::complex[n / 2]; /// Coefficients of even power auto *po = new std::complex[n / 2]; /// Coefficients of odd power int k1 = 0, k2 = 0; for (int j = 0; j < n; j++) { if (j % 2 == 0) { pe[k1++] = p[j]; /// Assigning values of even Coefficients } else { po[k2++] = p[j]; /// Assigning value of odd Coefficients } } std::complex *ye = FastFourierTransform(pe, n / 2); /// Recursive Call std::complex *yo = FastFourierTransform(po, n / 2); /// Recursive Call auto *y = new std::complex[n]; /// Final value representation list k1 = 0, k2 = 0; for (int i = 0; i < n / 2; i++) { y[i] = ye[k1] + pow(om, i) * yo[k2]; /// Updating the first n/2 elements y[i + n / 2] = ye[k1] - pow(om, i) * yo[k2]; /// Updating the last n/2 elements k1++; k2++; } if (n != 2) { delete[] pe; delete[] po; } delete[] ye; /// Deleting dynamic array ye delete[] yo; /// Deleting dynamic array yo return y; } } // namespace numerical_methods /** * @brief Self-test implementations * @details * Declaring two test cases and checking for the error * in predicted and true value is less than 0.000000000001. * @returns void */ static void test() { /* descriptions of the following test */ auto *t1 = new std::complex[2]; /// Test case 1 auto *t2 = new std::complex[4]; /// Test case 2 t1[0] = {1, 0}; t1[1] = {2, 0}; t2[0] = {1, 0}; t2[1] = {2, 0}; t2[2] = {3, 0}; t2[3] = {4, 0}; uint8_t n1 = 2; uint8_t n2 = 4; std::vector> r1 = { {3, 0}, {-1, 0}}; /// True Answer for test case 1 std::vector> r2 = { {10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2 std::complex *o1 = numerical_methods::FastFourierTransform(t1, n1); std::complex *t3 = o1; /// Temporary variable used to delete memory location of o1 std::complex *o2 = numerical_methods::FastFourierTransform(t2, n2); std::complex *t4 = o2; /// Temporary variable used to delete memory location of o2 for (uint8_t i = 0; i < n1; i++) { assert((r1[i].real() - o1->real() < 0.000000000001) && (r1[i].imag() - o1->imag() < 0.000000000001)); /// Comparing for both real and imaginary /// values for test case 1 o1++; } for (uint8_t i = 0; i < n2; i++) { assert((r2[i].real() - o2->real() < 0.000000000001) && (r2[i].imag() - o2->imag() < 0.000000000001)); /// Comparing for both real and imaginary /// values for test case 2 o2++; } delete[] t1; delete[] t2; delete[] t3; delete[] t4; std::cout << "All tests have successfully passed!\n"; } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * calls automated test function to test the working of fast fourier transform. * @returns 0 on exit */ int main(int argc, char const *argv[]) { test(); // run self-test implementations // with 2 defined test cases return 0; }