/** * @file * @brief Implementation for the [Intersection of two sorted * Arrays](https://en.wikipedia.org/wiki/Intersection_(set_theory)) * algorithm. * @details The intersection of two arrays is the collection of all the elements * that are common in both the first and second arrays. This implementation uses * ordered arrays, and an algorithm to correctly order them and return the * result as a new array (vector). * @see union_of_two_arrays.cpp * @author [Alvin](https://github.com/polarvoid) */ #include /// for std::sort #include /// for assert #include /// for IO operations #include /// for std::vector /** * @namespace operations_on_datastructures * @brief Operations on Data Structures */ namespace operations_on_datastructures { /** * @brief Prints the values of a vector sequentially, ending with a newline * character. * @param array Reference to the array to be printed * @returns void */ void print(const std::vector &array) { for (int32_t i : array) { std::cout << i << " "; /// Print each value in the array } std::cout << "\n"; /// Print newline } /** * @brief Gets the intersection of two sorted arrays, and returns them in a * vector. * @details An algorithm is used that compares the elements of the two vectors, * incrementing the index of the smaller of the two. If the elements are the * same, the element is appended to the result array to be returned. * @param first A std::vector of sorted integer values * @param second A std::vector of sorted integer values * @returns A std::vector of the intersection of the two arrays, in ascending * order */ std::vector get_intersection(const std::vector &first, const std::vector &second) { std::vector res; ///< Vector to hold the intersection size_t f_index = 0; ///< Index for the first array size_t s_index = 0; ///< Index for the second array size_t f_length = first.size(); ///< Length of first array size_t s_length = second.size(); ///< Length of second array while (f_index < f_length && s_index < s_length) { if (first[f_index] < second[s_index]) { f_index++; ///< Increment index of second array } else if (first[f_index] > second[s_index]) { s_index++; ///< Increment index of second array } else { if ((res.size() == 0) || (first[f_index] != res.back())) { res.push_back( first[f_index]); ///< Add the element if it is unique } f_index++; ///< Increment index of first array s_index++; ///< Increment index of second array too } } return res; } } // namespace operations_on_datastructures /** * @namespace tests * @brief Testcases to check intersection of Two Arrays. */ namespace tests { using operations_on_datastructures::get_intersection; using operations_on_datastructures::print; /** * @brief A Test to check an edge case (two empty arrays) * @returns void */ void test1() { std::cout << "TEST CASE 1\n"; std::cout << "Intialized a = {} b = {}\n"; std::cout << "Expected result: {}\n"; std::vector a = {}; std::vector b = {}; std::vector result = get_intersection(a, b); assert(result == a); ///< Check if result is empty print(result); ///< Should only print newline std::cout << "TEST PASSED!\n\n"; } /** * @brief A Test to check an edge case (one empty array) * @returns void */ void test2() { std::cout << "TEST CASE 2\n"; std::cout << "Intialized a = {} b = {2, 3}\n"; std::cout << "Expected result: {}\n"; std::vector a = {}; std::vector b = {2, 3}; std::vector result = get_intersection(a, b); assert(result == a); ///< Check if result is equal to a print(result); ///< Should only print newline std::cout << "TEST PASSED!\n\n"; } /** * @brief A Test to check correct functionality with a simple test case * @returns void */ void test3() { std::cout << "TEST CASE 3\n"; std::cout << "Intialized a = {4, 6} b = {3, 6}\n"; std::cout << "Expected result: {6}\n"; std::vector a = {4, 6}; std::vector b = {3, 6}; std::vector result = get_intersection(a, b); std::vector expected = {6}; assert(result == expected); ///< Check if result is correct print(result); ///< Should print 6 std::cout << "TEST PASSED!\n\n"; } /** * @brief A Test to check correct functionality with duplicate values * @returns void */ void test4() { std::cout << "TEST CASE 4\n"; std::cout << "Intialized a = {4, 6, 6, 6} b = {2, 4, 4, 6}\n"; std::cout << "Expected result: {4, 6}\n"; std::vector a = {4, 6, 6, 6}; std::vector b = {2, 4, 4, 6}; std::vector result = get_intersection(a, b); std::vector expected = {4, 6}; assert(result == expected); ///< Check if result is correct print(result); ///< Should print 4 6 std::cout << "TEST PASSED!\n\n"; } /** * @brief A Test to check correct functionality with a harder test case * @returns void */ void test5() { std::cout << "TEST CASE 5\n"; std::cout << "Intialized a = {1, 2, 3, 4, 6, 7, 9} b = {2, 3, 4, 5}\n"; std::cout << "Expected result: {2, 3, 4}\n"; std::vector a = {1, 2, 3, 4, 6, 7, 9}; std::vector b = {2, 3, 4, 5}; std::vector result = get_intersection(a, b); std::vector expected = {2, 3, 4}; assert(result == expected); ///< Check if result is correct print(result); ///< Should print 2 3 4 std::cout << "TEST PASSED!\n\n"; } /** * @brief A Test to check correct functionality with an array sorted using * std::sort * @returns void */ void test6() { std::cout << "TEST CASE 6\n"; std::cout << "Intialized a = {1, 3, 3, 2, 5, 9, 4, 7, 3, 2} "; std::cout << "b = {11, 3, 7, 8, 6}\n"; std::cout << "Expected result: {3, 7}\n"; std::vector a = {1, 3, 3, 2, 5, 9, 4, 7, 3, 2}; std::vector b = {11, 3, 7, 8, 6}; std::sort(a.begin(), a.end()); ///< Sort vector a std::sort(b.begin(), b.end()); ///< Sort vector b std::vector result = get_intersection(a, b); std::vector expected = {3, 7}; assert(result == expected); ///< Check if result is correct print(result); ///< Should print 3 7 std::cout << "TEST PASSED!\n\n"; } } // namespace tests /** * @brief Function to test the correctness of get_intersection() function * @returns void */ static void test() { tests::test1(); tests::test2(); tests::test3(); tests::test4(); tests::test5(); tests::test6(); } /** * @brief main function * @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; }