/** * @file * @brief C++ Program to find the modular inverse using [Fermat's Little * Theorem](https://en.wikipedia.org/wiki/Fermat%27s_little_theorem) * * Fermat's Little Theorem state that \f[ϕ(m) = m-1\f] * where \f$m\f$ is a prime number. * \f{eqnarray*}{ * a \cdot x &≡& 1 \;\text{mod}\; m\\ * x &≡& a^{-1} \;\text{mod}\; m * \f} * Using Euler's theorem we can modify the equation. *\f[ * a^{ϕ(m)} ≡ 1 \;\text{mod}\; m * \f] * (Where '^' denotes the exponent operator) * * Here 'ϕ' is Euler's Totient Function. For modular inverse existence 'a' and * 'm' must be relatively primes numbers. To apply Fermat's Little Theorem is * necessary that 'm' must be a prime number. Generally in many competitive * programming competitions 'm' is either 1000000007 (1e9+7) or 998244353. * * We considered m as large prime (1e9+7). * \f$a^{ϕ(m)} ≡ 1 \;\text{mod}\; m\f$ (Using Euler's Theorem) * \f$ϕ(m) = m-1\f$ using Fermat's Little Theorem. * \f$a^{m-1} ≡ 1 \;\text{mod}\; m\f$ * Now multiplying both side by \f$a^{-1}\f$. * \f{eqnarray*}{ * a^{m-1} \cdot a^{-1} &≡& a^{-1} \;\text{mod}\; m\\ * a^{m-2} &≡& a^{-1} \;\text{mod}\; m * \f} * * We will find the exponent using binary exponentiation. Such that the * algorithm works in \f$O(\log m)\f$ time. * * Examples: - * * a = 3 and m = 7 * * \f$a^{-1} \;\text{mod}\; m\f$ is equivalent to * \f$a^{m-2} \;\text{mod}\; m\f$ * * \f$3^5 \;\text{mod}\; 7 = 243 \;\text{mod}\; 7 = 5\f$ *
Hence, \f$3^{-1} \;\text{mod}\; 7 = 5\f$ * or \f$3 \times 5 \;\text{mod}\; 7 = 1 \;\text{mod}\; 7\f$ * (as \f$a\times a^{-1} = 1\f$) */ #include #include /** Recursive function to calculate exponent in \f$O(\log n)\f$ using binary * exponent. */ int64_t binExpo(int64_t a, int64_t b, int64_t m) { a %= m; int64_t res = 1; while (b > 0) { if (b % 2) { res = res * a % m; } a = a * a % m; // Dividing b by 2 is similar to right shift. b >>= 1; } return res; } /** Prime check in \f$O(\sqrt{m})\f$ time. */ bool isPrime(int64_t m) { if (m <= 1) { return false; } else { for (int64_t i = 2; i * i <= m; i++) { if (m % i == 0) { return false; } } } return true; } /** * Main function */ int main() { int64_t a, m; // Take input of a and m. std::cout << "Computing ((a^(-1))%(m)) using Fermat's Little Theorem"; std::cout << std::endl << std::endl; std::cout << "Give input 'a' and 'm' space separated : "; std::cin >> a >> m; if (isPrime(m)) { std::cout << "The modular inverse of a with mod m is (a^(m-2)) : "; std::cout << binExpo(a, m - 2, m) << std::endl; } else { std::cout << "m must be a prime number."; std::cout << std::endl; } }