/** * @file * @brief Implementation of cutting a rod problem * * @details * Given a rod of length n inches and an array of prices that * contains prices of all pieces of size<=n. Determine * the maximum profit obtainable by cutting up the rod and selling * the pieces. * * ### Algorithm * The idea is to break the given rod into every smaller piece as possible * and then check profit for each piece, by calculating maximum profit for * smaller pieces we will build the solution for larger pieces in bottom-up * manner. * * @author [Anmol](https://github.com/Anmol3299) * @author [Pardeep](https://github.com/Pardeep009) */ #include #include #include #include /** * @namespace dynamic_programming * @brief Dynamic Programming algorithms */ namespace dynamic_programming { /** * @namespace cut_rod * @brief Implementation of cutting a rod problem */ namespace cut_rod { /** * @brief Cuts the rod in different pieces and * stores the maximum profit for each piece of the rod. * @tparam T size of the price array * @param n size of the rod in inches * @param price an array of prices that contains prices of all pieces of size<=n * @return maximum profit obtainable for @param n inch rod. */ template int maxProfitByCuttingRod(const std::array &price, const uint64_t &n) { int *profit = new int[n + 1]; // profit[i] will hold maximum profit for i inch rod profit[0] = 0; // if length of rod is zero, then no profit // outer loop will select size of rod, starting from 1 inch to n inch rod. // inner loop will evaluate the maximum profit we can get for i inch rod by // making every possible cut on it and will store it in profit[i]. for (size_t i = 1; i <= n; i++) { int q = INT_MIN; for (size_t j = 1; j <= i; j++) { q = std::max(q, price[j - 1] + profit[i - j]); } profit[i] = q; } const int16_t ans = profit[n]; delete[] profit; return ans; // returning maximum profit } } // namespace cut_rod } // namespace dynamic_programming /** * @brief Function to test above algorithm * @returns void */ static void test() { // Test 1 const int16_t n1 = 8; // size of rod std::array price1 = {1,2,4,6,8,45,21,9}; // price array const int64_t max_profit1 = dynamic_programming::cut_rod::maxProfitByCuttingRod(price1, n1); const int64_t expected_max_profit1 = 47; assert(max_profit1 == expected_max_profit1); std::cout << "Maximum profit with " << n1 << " inch road is " << max_profit1 << std::endl; // Test 2 const int16_t n2 = 30; // size of rod std::array price2 = { 1, 5, 8, 9, 10, 17, 17, 20, 24, 30, // price array 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}; const int64_t max_profit2= dynamic_programming::cut_rod::maxProfitByCuttingRod(price2, n2); const int32_t expected_max_profit2 = 90; assert(max_profit2 == expected_max_profit2); std::cout << "Maximum profit with " << n2 << " inch road is " << max_profit2 << std::endl; // Test 3 const int16_t n3 = 5; // size of rod std::array price3 = {2,9,17,23,45}; // price array const int64_t max_profit3 = dynamic_programming::cut_rod::maxProfitByCuttingRod(price3, n3); const int64_t expected_max_profit3 = 45; assert(max_profit3 == expected_max_profit3); std::cout << "Maximum profit with " << n3 << " inch road is " << max_profit3 << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { // Testing test(); return 0; }