/** * \addtogroup machine_learning Machine Learning Algorithms * @{ * \file * \brief [Adaptive Linear Neuron * (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation * * \author [Krishna Vedala](https://github.com/kvedala) * * \details * Structure of an ADALINE network. Source: Wikipedia * * ADALINE is one of the first and simplest single layer artificial neural * network. The algorithm essentially implements a linear function * \f[ f\left(x_0,x_1,x_2,\ldots\right) = * \sum_j x_jw_j+\theta * \f] * where \f$x_j\f$ are the input features of a sample, \f$w_j\f$ are the * coefficients of the linear function and \f$\theta\f$ is a constant. If we * know the \f$w_j\f$, then for any given set of features, \f$y\f$ can be * computed. Computing the \f$w_j\f$ is a supervised learning algorithm wherein * a set of features and their corresponding outputs are given and weights are * computed using stochastic gradient descent method. */ #include #include #include #include #include #include #include #include #define MAX_ITER 500 // INT_MAX ///< Maximum number of iterations to learn /** \namespace machine_learning * \brief Machine learning algorithms */ namespace machine_learning { class adaline { public: /** * Default constructor * \param[in] num_features number of features present * \param[in] eta learning rate (optional, default=0.1) * \param[in] convergence accuracy (optional, * default=\f$1\times10^{-5}\f$) */ adaline(int num_features, const double eta = 0.01f, const double accuracy = 1e-5) : eta(eta), accuracy(accuracy) { if (eta <= 0) { std::cerr << "learning rate should be positive and nonzero" << std::endl; std::exit(EXIT_FAILURE); } weights = std::vector( num_features + 1); // additional weight is for the constant bias term // initialize with random weights in the range [-50, 49] for (int i = 0; i < weights.size(); i++) weights[i] = 1.f; // weights[i] = (static_cast(std::rand() % 100) - 50); } /** * Operator to print the weights of the model */ friend std::ostream &operator<<(std::ostream &out, const adaline &ada) { out << "<"; for (int i = 0; i < ada.weights.size(); i++) { out << ada.weights[i]; if (i < ada.weights.size() - 1) out << ", "; } out << ">"; return out; } /** * predict the output of the model for given set of features * \param[in] x input vector * \param[out] out optional argument to return neuron output before * applying activation function (optional, `nullptr` to ignore) \returns * model prediction output */ int predict(const std::vector &x, double *out = nullptr) { if (!check_size_match(x)) return 0; double y = weights.back(); // assign bias value // for (int i = 0; i < x.size(); i++) y += x[i] * weights[i]; y = std::inner_product(x.begin(), x.end(), weights.begin(), y); if (out != nullptr) // if out variable is provided *out = y; return activation(y); // quantizer: apply ADALINE threshold function } /** * Update the weights of the model using supervised learning for one * feature vector \param[in] x feature vector \param[in] y known output * value \returns correction factor */ double fit(const std::vector &x, const int &y) { if (!check_size_match(x)) return 0; /* output of the model with current weights */ int p = predict(x); int prediction_error = y - p; // error in estimation double correction_factor = eta * prediction_error; /* update each weight, the last weight is the bias term */ for (int i = 0; i < x.size(); i++) { weights[i] += correction_factor * x[i]; } weights[x.size()] += correction_factor; // update bias return correction_factor; } /** * Update the weights of the model using supervised learning for an * array of vectors. \param[in] X array of feature vector \param[in] y * known output value for each feature vector */ template void fit(std::vector const (&X)[N], const int *y) { double avg_pred_error = 1.f; int iter; for (iter = 0; (iter < MAX_ITER) && (avg_pred_error > accuracy); iter++) { avg_pred_error = 0.f; // perform fit for each sample for (int i = 0; i < N; i++) { double err = fit(X[i], y[i]); avg_pred_error += std::abs(err); } avg_pred_error /= N; // Print updates every 200th iteration // if (iter % 100 == 0) std::cout << "\tIter " << iter << ": Training weights: " << *this << "\tAvg error: " << avg_pred_error << std::endl; } if (iter < MAX_ITER) std::cout << "Converged after " << iter << " iterations." << std::endl; else std::cout << "Did not converge after " << iter << " iterations." << std::endl; } int activation(double x) { return x > 0 ? 1 : -1; } private: /** * convenient function to check if input feature vector size matches the * model weights size * \param[in] x fecture vector to check * \returns `true` size matches * \returns `false` size does not match */ bool check_size_match(const std::vector &x) { if (x.size() != (weights.size() - 1)) { std::cerr << __func__ << ": " << "Number of features in x does not match the feature " "dimension in model!" << std::endl; return false; } return true; } const double eta; ///< learning rate of the algorithm const double accuracy; ///< model fit convergence accuracy std::vector weights; ///< weights of the neural network }; } // namespace machine_learning using machine_learning::adaline; /** @} */ /** * test function to predict points in a 2D coordinate system above the line * \f$x=y\f$ as +1 and others as -1. * Note that each point is defined by 2 values or 2 features. * \param[in] eta learning rate (optional, default=0.01) */ void test1(double eta = 0.01) { adaline ada(2, eta); // 2 features const int N = 10; // number of sample points std::vector X[N] = {{0, 1}, {1, -2}, {2, 3}, {3, -1}, {4, 1}, {6, -5}, {-7, -3}, {-8, 5}, {-9, 2}, {-10, -15}}; int y[] = {1, -1, 1, -1, -1, -1, 1, 1, 1, -1}; // corresponding y-values std::cout << "------- Test 1 -------" << std::endl; std::cout << "Model before fit: " << ada << std::endl; ada.fit(X, y); std::cout << "Model after fit: " << ada << std::endl; int predict = ada.predict({5, -3}); std::cout << "Predict for x=(5,-3): " << predict; assert(predict == -1); std::cout << " ...passed" << std::endl; predict = ada.predict({5, 8}); std::cout << "Predict for x=(5,8): " << predict; assert(predict == 1); std::cout << " ...passed" << std::endl; } /** * test function to predict points in a 2D coordinate system above the line * \f$x+3y=-1\f$ as +1 and others as -1. * Note that each point is defined by 2 values or 2 features. * The function will create random sample points for training and test purposes. * \param[in] eta learning rate (optional, default=0.01) */ void test2(double eta = 0.01) { adaline ada(2, eta); // 2 features const int N = 50; // number of sample points std::vector X[N]; int Y[N]; // corresponding y-values // generate sample points in the interval // [-range2/100 , (range2-1)/100] int range = 500; // sample points full-range int range2 = range >> 1; // sample points half-range for (int i = 0; i < N; i++) { double x0 = ((std::rand() % range) - range2) / 100.f; double x1 = ((std::rand() % range) - range2) / 100.f; X[i] = {x0, x1}; Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1; } std::cout << "------- Test 2 -------" << std::endl; std::cout << "Model before fit: " << ada << std::endl; ada.fit(X, Y); std::cout << "Model after fit: " << ada << std::endl; int N_test_cases = 5; for (int i = 0; i < N_test_cases; i++) { double x0 = ((std::rand() % range) - range2) / 100.f; double x1 = ((std::rand() % range) - range2) / 100.f; int predict = ada.predict({x0, x1}); std::cout << "Predict for x=(" << x0 << "," << x1 << "): " << predict; int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1; assert(predict == expected_val); std::cout << " ...passed" << std::endl; } } /** * test function to predict points in a 3D coordinate system lying within the * sphere of radius 1 and centre at origin as +1 and others as -1. Note that * each point is defined by 3 values but we use 6 features. The function will * create random sample points for training and test purposes. * The sphere centred at origin and radius 1 is defined as: * \f$x^2+y^2+z^2=r^2=1\f$ and if the \f$r^2<1\f$, point lies within the sphere * else, outside. * * \param[in] eta learning rate (optional, default=0.01) */ void test3(double eta = 0.01) { adaline ada(6, eta); // 2 features const int N = 100; // number of sample points std::vector X[N]; int Y[N]; // corresponding y-values // generate sample points in the interval // [-range2/100 , (range2-1)/100] int range = 200; // sample points full-range int range2 = range >> 1; // sample points half-range for (int i = 0; i < N; i++) { double x0 = ((std::rand() % range) - range2) / 100.f; double x1 = ((std::rand() % range) - range2) / 100.f; double x2 = ((std::rand() % range) - range2) / 100.f; X[i] = {x0, x1, x2, x0 * x0, x1 * x1, x2 * x2}; Y[i] = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1; } std::cout << "------- Test 3 -------" << std::endl; std::cout << "Model before fit: " << ada << std::endl; ada.fit(X, Y); std::cout << "Model after fit: " << ada << std::endl; int N_test_cases = 5; for (int i = 0; i < N_test_cases; i++) { double x0 = ((std::rand() % range) - range2) / 100.f; double x1 = ((std::rand() % range) - range2) / 100.f; double x2 = ((std::rand() % range) - range2) / 100.f; int predict = ada.predict({x0, x1, x2, x0 * x0, x1 * x1, x2 * x2}); std::cout << "Predict for x=(" << x0 << "," << x1 << "," << x2 << "): " << predict; int expected_val = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1; assert(predict == expected_val); std::cout << " ...passed" << std::endl; } } /** Main function */ int main(int argc, char **argv) { std::srand(std::time(nullptr)); // initialize random number generator double eta = 0.1; // default value of eta if (argc == 2) // read eta value from commandline argument if present eta = strtof(argv[1], nullptr); test1(eta); std::cout << "Press ENTER to continue..." << std::endl; std::cin.get(); test2(eta); std::cout << "Press ENTER to continue..." << std::endl; std::cin.get(); test3(eta); return 0; }