/** * @file * @brief Faster computation of Fibonacci series * * An efficient way to calculate nth fibonacci number faster and simpler than * \f$O(n\log n)\f$ method of matrix exponentiation This works by using both * recursion and dynamic programming. as 93rd fibonacci exceeds 19 digits, which * cannot be stored in a single long long variable, we can only use it till 92nd * fibonacci we can use it for 10000th fibonacci etc, if we implement * bigintegers. This algorithm works with the fact that nth fibonacci can easily * found if we have already found n/2th or (n+1)/2th fibonacci It is a property * of fibonacci similar to matrix exponentiation. * * \author [Krishna Vedala](https://github.com/kvedala) * @see fibonacci_large.cpp, fibonacci.cpp, string_fibonacci.cpp */ #include #include #include /** maximum number that can be computed - The result after 93 cannot be stored * in a `uint64_t` data type. */ const uint64_t MAX = 93; /** Array of computed fibonacci numbers */ uint64_t f[MAX] = {0}; /** Algorithm */ uint64_t fib(uint64_t n) { if (n == 0) return 0; if (n == 1 || n == 2) return (f[n] = 1); if (f[n]) return f[n]; uint64_t k = (n % 2 != 0) ? (n + 1) / 2 : n / 2; f[n] = (n % 2 != 0) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) : (2 * fib(k - 1) + fib(k)) * fib(k); return f[n]; } /** Main function */ int main() { // Main Function for (uint64_t i = 1; i < 93; i++) { std::cout << i << " th fibonacci number is " << fib(i) << std::endl; } return 0; }