/** * @author tjgurwara99 * @file * * \brief An implementation of Complex Number as Objects * \details A basic implementation of Complex Number field as a class with * operators overloaded to accommodate (mathematical) field operations. */ #include #include #include #include #include #include /** * \brief Class Complex to represent complex numbers as a field. */ class Complex { // The real value of the complex number double re; // The imaginary value of the complex number double im; public: /** * \brief Complex Constructor which initialises our complex number. * \details * Complex Constructor which initialises the complex number which takes * three arguments. * @param x If the third parameter is 'true' then this x is the absolute * value of the complex number, if the third parameter is 'false' then this * x is the real value of the complex number (optional). * @param y If the third parameter is 'true' then this y is the argument of * the complex number, if the third parameter is 'false' then this y is the * imaginary value of the complex number (optional). * @param is_polar 'false' by default. If we want to initialise our complex * number using polar form then set this to true, otherwise set it to false * to use initialiser which initialises real and imaginary values using the * first two parameters (optional). */ explicit Complex(double x = 0.f, double y = 0.f, bool is_polar = false) { if (!is_polar) { re = x; im = y; return; } re = x * std::cos(y); im = x * std::sin(y); } /** * \brief Copy Constructor * @param other The other number to equate our number to. */ Complex(const Complex &other) : re(other.real()), im(other.imag()) {} /** * \brief Member function to get real value of our complex number. * Member function (getter) to access the class' re value. */ double real() const { return this->re; } /** * \brief Member function to get imaginary value of our complex number. * Member function (getter) to access the class' im value. */ double imag() const { return this->im; } /** * \brief Member function to give the modulus of our complex number. * Member function to which gives the absolute value (modulus) of our * complex number * @return \f$ \sqrt{z \bar{z}} \f$ where \f$ z \f$ is our complex * number. */ double abs() const { return std::sqrt(this->re * this->re + this->im * this->im); } /** * \brief Member function to give the argument of our complex number. * @return Argument of our Complex number in radians. */ double arg() const { return std::atan2(this->im, this->re); } /** * \brief Operator overload of '+' on Complex class. * Operator overload to be able to add two complex numbers. * @param other The other number that is added to the current number. * @return result current number plus other number */ Complex operator+(const Complex &other) { Complex result(this->re + other.re, this->im + other.im); return result; } /** * \brief Operator overload of '-' on Complex class. * Operator overload to be able to subtract two complex numbers. * @param other The other number being subtracted from the current number. * @return result current number subtract other number */ Complex operator-(const Complex &other) { Complex result(this->re - other.re, this->im - other.im); return result; } /** * \brief Operator overload of '*' on Complex class. * Operator overload to be able to multiple two complex numbers. * @param other The other number to multiply the current number to. * @return result current number times other number. */ Complex operator*(const Complex &other) { Complex result(this->re * other.re - this->im * other.im, this->re * other.im + this->im * other.re); return result; } /** * \brief Operator overload of '~' on Complex class. * Operator overload of the BITWISE NOT which gives us the conjugate of our * complex number. NOTE: This is overloading the BITWISE operator but its * not a BITWISE operation in this definition. * @return result The conjugate of our complex number. */ Complex operator~() const { Complex result(this->re, -(this->im)); return result; } /** * \brief Operator overload of '/' on Complex class. * Operator overload to be able to divide two complex numbers. This function * would throw an exception if the other number is zero. * @param other The other number we divide our number by. * @return result Current number divided by other number. */ Complex operator/(const Complex &other) { Complex result = *this * ~other; double denominator = other.real() * other.real() + other.imag() * other.imag(); if (denominator != 0) { result = Complex(result.real() / denominator, result.imag() / denominator); return result; } else { throw std::invalid_argument("Undefined Value"); } } /** * \brief Operator overload of '=' on Complex class. * Operator overload to be able to copy RHS instance of Complex to LHS * instance of Complex */ const Complex &operator=(const Complex &other) { this->re = other.real(); this->im = other.imag(); return *this; } }; /** * \brief Operator overload of '==' on Complex class. * Logical Equal overload for our Complex class. * @param a Left hand side of our expression * @param b Right hand side of our expression * @return 'True' If real and imaginary parts of a and b are same * @return 'False' Otherwise. */ bool operator==(const Complex &a, const Complex &b) { return a.real() == b.real() && a.imag() == b.imag(); } /** * \brief Operator overload of '<<' of ostream for Complex class. * Overloaded insersion operator to accommodate the printing of our complex * number in their standard form. * @param os The console stream * @param num The complex number. */ std::ostream &operator<<(std::ostream &os, const Complex &num) { os << "(" << num.real(); if (num.imag() < 0) { os << " - " << -num.imag(); } else { os << " + " << num.imag(); } os << "i)"; return os; } /** * \brief Function to get random numbers to generate our complex numbers for * test */ double get_rand() { return (std::rand() % 100 - 50) / 100.f; } /** * Tests Function */ void tests() { std::srand(std::time(nullptr)); double x1 = get_rand(), y1 = get_rand(), x2 = get_rand(), y2 = get_rand(); Complex num1(x1, y1), num2(x2, y2); std::complex cnum1(x1, y1), cnum2(x2, y2); Complex result; std::complex expected; // Test for addition result = num1 + num2; expected = cnum1 + cnum2; assert(((void)"1 + 1i + 1 + 1i is equal to 2 + 2i but the addition doesn't " "add up \n", (result.real() == expected.real() && result.imag() == expected.imag()))); std::cout << "First test passes." << std::endl; // Test for subtraction result = num1 - num2; expected = cnum1 - cnum2; assert(((void)"1 + 1i - 1 - 1i is equal to 0 but the program says " "otherwise. \n", (result.real() == expected.real() && result.imag() == expected.imag()))); std::cout << "Second test passes." << std::endl; // Test for multiplication result = num1 * num2; expected = cnum1 * cnum2; assert(((void)"(1 + 1i) * (1 + 1i) is equal to 2i but the program says " "otherwise. \n", (result.real() == expected.real() && result.imag() == expected.imag()))); std::cout << "Third test passes." << std::endl; // Test for division result = num1 / num2; expected = cnum1 / cnum2; assert(((void)"(1 + 1i) / (1 + 1i) is equal to 1 but the program says " "otherwise.\n", (result.real() == expected.real() && result.imag() == expected.imag()))); std::cout << "Fourth test passes." << std::endl; // Test for conjugates result = ~num1; expected = std::conj(cnum1); assert(((void)"(1 + 1i) has a conjugate which is equal to (1 - 1i) but the " "program says otherwise.\n", (result.real() == expected.real() && result.imag() == expected.imag()))); std::cout << "Fifth test passes.\n"; // Test for Argument of our complex number assert(((void)"(1 + 1i) has argument PI / 4 but the program differs from " "the std::complex result.\n", (num1.arg() == std::arg(cnum1)))); std::cout << "Sixth test passes.\n"; // Test for absolute value of our complex number assert(((void)"(1 + 1i) has absolute value sqrt(2) but the program differs " "from the std::complex result. \n", (num1.abs() == std::abs(cnum1)))); std::cout << "Seventh test passes.\n"; } /** * Main function */ int main() { tests(); return 0; }