/** * @file * @brief [Monte Carlo * Integration](https://en.wikipedia.org/wiki/Monte_Carlo_integration) * * @details * In mathematics, Monte Carlo integration is a technique for numerical * integration using random numbers. It is a particular Monte Carlo method that * numerically computes a definite integral. While other algorithms usually * evaluate the integrand at a regular grid, Monte Carlo randomly chooses points * at which the integrand is evaluated. This method is particularly useful for * higher-dimensional integrals. * * This implementation supports arbitrary pdfs. * These pdfs are sampled using the [Metropolis-Hastings * algorithm](https://en.wikipedia.org/wiki/Metropolis–Hastings_algorithm). This * can be swapped out by every other sampling techniques for example the inverse * method. Metropolis-Hastings was chosen because it is the most general and can * also be extended for a higher dimensional sampling space. * * @author [Domenic Zingsheim](https://github.com/DerAndereDomenic) */ #define _USE_MATH_DEFINES /// for M_PI on windows #include /// for math functions #include /// for fixed size data types #include /// for time to initialize rng #include /// for function pointers #include /// for std::cout #include /// for random number generation #include /// for std::vector /** * @namespace math * @brief Math algorithms */ namespace math { /** * @namespace monte_carlo * @brief Functions for the [Monte Carlo * Integration](https://en.wikipedia.org/wiki/Monte_Carlo_integration) * implementation */ namespace monte_carlo { using Function = std::function; /// short-hand for std::functions used in this implementation /** * @brief Generate samples according to some pdf * @details This function uses Metropolis-Hastings to generate random numbers. * It generates a sequence of random numbers by using a markov chain. Therefore, * we need to define a start_point and the number of samples we want to * generate. Because the first samples generated by the markov chain may not be * distributed according to the given pdf, one can specify how many samples * should be discarded before storing samples. * @param start_point The starting point of the markov chain * @param pdf The pdf to sample * @param num_samples The number of samples to generate * @param discard How many samples should be discarded at the start * @returns A vector of size num_samples with samples distributed according to * the pdf */ std::vector generate_samples(const double& start_point, const Function& pdf, const uint32_t& num_samples, const uint32_t& discard = 100000) { std::vector samples; samples.reserve(num_samples); double x_t = start_point; std::default_random_engine generator; std::uniform_real_distribution uniform(0.0, 1.0); std::normal_distribution normal(0.0, 1.0); generator.seed(time(nullptr)); for (uint32_t t = 0; t < num_samples + discard; ++t) { // Generate a new proposal according to some mutation strategy. // This is arbitrary and can be swapped. double x_dash = normal(generator) + x_t; double acceptance_probability = std::min(pdf(x_dash) / pdf(x_t), 1.0); double u = uniform(generator); // Accept "new state" according to the acceptance_probability if (u <= acceptance_probability) { x_t = x_dash; } if (t >= discard) { samples.push_back(x_t); } } return samples; } /** * @brief Compute an approximation of an integral using Monte Carlo integration * @details The integration domain [a,b] is given by the pdf. * The pdf has to fulfill the following conditions: * 1) for all x \in [a,b] : p(x) > 0 * 2) for all x \not\in [a,b] : p(x) = 0 * 3) \int_a^b p(x) dx = 1 * @param start_point The start point of the Markov Chain (see generate_samples) * @param function The function to integrate * @param pdf The pdf to sample * @param num_samples The number of samples used to approximate the integral * @returns The approximation of the integral according to 1/N \sum_{i}^N f(x_i) * / p(x_i) */ double integral_monte_carlo(const double& start_point, const Function& function, const Function& pdf, const uint32_t& num_samples = 1000000) { double integral = 0.0; std::vector samples = generate_samples(start_point, pdf, num_samples); for (double sample : samples) { integral += function(sample) / pdf(sample); } return integral / static_cast(samples.size()); } } // namespace monte_carlo } // namespace math /** * @brief Self-test implementations * @returns void */ static void test() { std::cout << "Disclaimer: Because this is a randomized algorithm," << std::endl; std::cout << "it may happen that singular samples deviate from the true result." << std::endl << std::endl; ; math::monte_carlo::Function f; math::monte_carlo::Function pdf; double integral = 0; double lower_bound = 0, upper_bound = 0; /* \int_{-2}^{2} -x^2 + 4 dx */ f = [&](double& x) { return -x * x + 4.0; }; lower_bound = -2.0; upper_bound = 2.0; pdf = [&](double& x) { if (x >= lower_bound && x <= -1.0) { return 0.1; } if (x <= upper_bound && x >= 1.0) { return 0.1; } if (x > -1.0 && x < 1.0) { return 0.4; } return 0.0; }; integral = math::monte_carlo::integral_monte_carlo( (upper_bound - lower_bound) / 2.0, f, pdf); std::cout << "This number should be close to 10.666666: " << integral << std::endl; /* \int_{0}^{1} e^x dx */ f = [&](double& x) { return std::exp(x); }; lower_bound = 0.0; upper_bound = 1.0; pdf = [&](double& x) { if (x >= lower_bound && x <= 0.2) { return 0.1; } if (x > 0.2 && x <= 0.4) { return 0.4; } if (x > 0.4 && x < upper_bound) { return 1.5; } return 0.0; }; integral = math::monte_carlo::integral_monte_carlo( (upper_bound - lower_bound) / 2.0, f, pdf); std::cout << "This number should be close to 1.7182818: " << integral << std::endl; /* \int_{-\infty}^{\infty} sinc(x) dx, sinc(x) = sin(pi * x) / (pi * x) This is a difficult integral because of its infinite domain. Therefore, it may deviate largely from the expected result. */ f = [&](double& x) { return std::sin(M_PI * x) / (M_PI * x); }; pdf = [&](double& x) { return 1.0 / std::sqrt(2.0 * M_PI) * std::exp(-x * x / 2.0); }; integral = math::monte_carlo::integral_monte_carlo(0.0, f, pdf, 10000000); std::cout << "This number should be close to 1.0: " << integral << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; }