/** * \addtogroup machine_learning Machine Learning Algorithms * @{ * \file * \brief [Kohonen self organizing * map](https://en.wikipedia.org/wiki/Self-organizing_map) (data tracing) * * This example implements a powerful self organizing map algorithm. * The algorithm creates a connected network of weights that closely * follows the given data points. This this creates a chain of nodes that * resembles the given input shape. * * \author [Krishna Vedala](https://github.com/kvedala) * * \note This C++ version of the program is considerable slower than its [C * counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c) * \note The compiled code is much slower when compiled with MS Visual C++ 2019 * than with GCC on windows * \see kohonen_som_topology.cpp */ #define _USE_MATH_DEFINES // required for MS Visual C++ #include #include #include #include #include #include #include #include #include #ifdef _OPENMP // check if OpenMP based parallellization is available #include #endif /** * Helper function to generate a random number in a given interval. * \n Steps: * 1. `r1 = rand() % 100` gets a random number between 0 and 99 * 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99 * 3. scale and offset the random number to given range of \f$[a,b]\f$ * * \param[in] a lower limit * \param[in] b upper limit * \returns random number in the range \f$[a,b]\f$ */ double _random(double a, double b) { return ((b - a) * (std::rand() % 100) / 100.f) + a; } /** * Save a given n-dimensional data martix to file. * * \param[in] fname filename to save in (gets overwriten without confirmation) * \param[in] X matrix to save * \returns 0 if all ok * \returns -1 if file creation failed */ int save_nd_data(const char *fname, const std::vector> &X) { size_t num_points = X.size(); // number of rows size_t num_features = X[0].size(); // number of columns std::ofstream fp; fp.open(fname); if (!fp.is_open()) { // error with opening file to write std::cerr << "Error opening file " << fname << "\n"; return -1; } // for each point in the array for (int i = 0; i < num_points; i++) { // for each feature in the array for (int j = 0; j < num_features; j++) { fp << X[i][j]; // print the feature value if (j < num_features - 1) { // if not the last feature fp << ","; // suffix comma } } if (i < num_points - 1) { // if not the last row fp << "\n"; // start a new line } } fp.close(); return 0; } /** \namespace machine_learning * \brief Machine learning algorithms */ namespace machine_learning { /** * Update weights of the SOM using Kohonen algorithm * * \param[in] X data point * \param[in,out] W weights matrix * \param[in,out] D temporary vector to store distances * \param[in] alpha learning rate \f$0<\alpha\le1\f$ * \param[in] R neighborhood range */ void update_weights(const std::valarray &x, std::vector> *W, std::valarray *D, double alpha, int R) { int j = 0, k = 0; int num_out = W->size(); // number of SOM output nodes // int num_features = x.size(); // number of data features #ifdef _OPENMP #pragma omp for #endif // step 1: for each output point for (j = 0; j < num_out; j++) { // compute Euclidian distance of each output // point from the current sample (*D)[j] = (((*W)[j] - x) * ((*W)[j] - x)).sum(); } // step 2: get closest node i.e., node with snallest Euclidian distance to // the current pattern auto result = std::min_element(std::begin(*D), std::end(*D)); // double d_min = *result; int d_min_idx = std::distance(std::begin(*D), result); // step 3a: get the neighborhood range int from_node = std::max(0, d_min_idx - R); int to_node = std::min(num_out, d_min_idx + R + 1); // step 3b: update the weights of nodes in the // neighborhood #ifdef _OPENMP #pragma omp for #endif for (j = from_node; j < to_node; j++) { // update weights of nodes in the neighborhood (*W)[j] += alpha * (x - (*W)[j]); } } /** * Apply incremental algorithm with updating neighborhood and learning rates * on all samples in the given datset. * * \param[in] X data set * \param[in,out] W weights matrix * \param[in] alpha_min terminal value of alpha */ void kohonen_som_tracer(const std::vector> &X, std::vector> *W, double alpha_min) { int num_samples = X.size(); // number of rows // int num_features = X[0].size(); // number of columns int num_out = W->size(); // number of rows int R = num_out >> 2, iter = 0; double alpha = 1.f; std::valarray D(num_out); // Loop alpha from 1 to slpha_min do { // Loop for each sample pattern in the data set for (int sample = 0; sample < num_samples; sample++) { // update weights for the current input pattern sample update_weights(X[sample], W, &D, alpha, R); } // every 10th iteration, reduce the neighborhood range if (iter % 10 == 0 && R > 1) { R--; } alpha -= 0.01; iter++; } while (alpha > alpha_min); } } // namespace machine_learning /** @} */ using machine_learning::kohonen_som_tracer; /** Creates a random set of points distributed *near* the circumference * of a circle and trains an SOM that finds that circular pattern. The * generating function is * \f{eqnarray*}{ * r &\in& [1-\delta r, 1+\delta r)\\ * \theta &\in& [0, 2\pi)\\ * x &=& r\cos\theta\\ * y &=& r\sin\theta * \f} * * \param[out] data matrix to store data in */ void test_circle(std::vector> *data) { const int N = data->size(); const double R = 0.75, dr = 0.3; double a_t = 0., b_t = 2.f * M_PI; // theta random between 0 and 2*pi double a_r = R - dr, b_r = R + dr; // radius random between R-dr and R+dr int i = 0; #ifdef _OPENMP #pragma omp for #endif for (i = 0; i < N; i++) { double r = _random(a_r, b_r); // random radius double theta = _random(a_t, b_t); // random theta data[0][i][0] = r * cos(theta); // convert from polar to cartesian data[0][i][1] = r * sin(theta); } } /** Test that creates a random set of points distributed *near* the * circumference of a circle and trains an SOM that finds that circular pattern. * The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) * files are created to validate the execution: * * `test1.csv`: random test samples points with a circular pattern * * `w11.csv`: initial random map * * `w12.csv`: trained SOM map * * The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using * the following snippet * ```gnuplot * set datafile separator ',' * plot "test1.csv" title "original", \ * "w11.csv" title "w1", \ * "w12.csv" title "w2" * ``` * ![Sample execution * output](https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/kohonen/test1.svg) */ void test1() { int j = 0, N = 500; int features = 2; int num_out = 50; std::vector> X(N); std::vector> W(num_out); for (int i = 0; i < std::max(num_out, N); i++) { // loop till max(N, num_out) if (i < N) { // only add new arrays if i < N X[i] = std::valarray(features); } if (i < num_out) { // only add new arrays if i < num_out W[i] = std::valarray(features); #ifdef _OPENMP #pragma omp for #endif for (j = 0; j < features; j++) { // preallocate with random initial weights W[i][j] = _random(-1, 1); } } } test_circle(&X); // create test data around circumference of a circle save_nd_data("test1.csv", X); // save test data points save_nd_data("w11.csv", W); // save initial random weights kohonen_som_tracer(X, &W, 0.1); // train the SOM save_nd_data("w12.csv", W); // save the resultant weights } /** Creates a random set of points distributed *near* the locus * of the [Lamniscate of * Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono). * \f{eqnarray*}{ * \delta r &=& 0.2\\ * \delta x &\in& [-\delta r, \delta r)\\ * \delta y &\in& [-\delta r, \delta r)\\ * \theta &\in& [0, \pi)\\ * x &=& \delta x + \cos\theta\\ * y &=& \delta y + \frac{\sin(2\theta)}{2} * \f} * \param[out] data matrix to store data in */ void test_lamniscate(std::vector> *data) { const int N = data->size(); const double dr = 0.2; int i = 0; #ifdef _OPENMP #pragma omp for #endif for (i = 0; i < N; i++) { double dx = _random(-dr, dr); // random change in x double dy = _random(-dr, dr); // random change in y double theta = _random(0, M_PI); // random theta data[0][i][0] = dx + cos(theta); // convert from polar to cartesian data[0][i][1] = dy + sin(2. * theta) / 2.f; } } /** Test that creates a random set of points distributed *near* the locus * of the [Lamniscate of * Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono) and trains an SOM * that finds that circular pattern. The following * [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created * to validate the execution: * * `test2.csv`: random test samples points with a lamniscate pattern * * `w21.csv`: initial random map * * `w22.csv`: trained SOM map * * The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using * the following snippet * ```gnuplot * set datafile separator ',' * plot "test2.csv" title "original", \ * "w21.csv" title "w1", \ * "w22.csv" title "w2" * ``` * ![Sample execution * output](https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/kohonen/test2.svg) */ void test2() { int j = 0, N = 500; int features = 2; int num_out = 20; std::vector> X(N); std::vector> W(num_out); for (int i = 0; i < std::max(num_out, N); i++) { // loop till max(N, num_out) if (i < N) { // only add new arrays if i < N X[i] = std::valarray(features); } if (i < num_out) { // only add new arrays if i < num_out W[i] = std::valarray(features); #ifdef _OPENMP #pragma omp for #endif for (j = 0; j < features; j++) { // preallocate with random initial weights W[i][j] = _random(-1, 1); } } } test_lamniscate(&X); // create test data around the lamniscate save_nd_data("test2.csv", X); // save test data points save_nd_data("w21.csv", W); // save initial random weights kohonen_som_tracer(X, &W, 0.01); // train the SOM save_nd_data("w22.csv", W); // save the resultant weights } /** Creates a random set of points distributed in six clusters in * 3D space with centroids at the points * * \f${0.5, 0.5, 0.5}\f$ * * \f${0.5, 0.5, -0.5}\f$ * * \f${0.5, -0.5, 0.5}\f$ * * \f${0.5, -0.5, -0.5}\f$ * * \f${-0.5, 0.5, 0.5}\f$ * * \f${-0.5, 0.5, -0.5}\f$ * * \f${-0.5, -0.5, 0.5}\f$ * * \f${-0.5, -0.5, -0.5}\f$ * * \param[out] data matrix to store data in */ void test_3d_classes(std::vector> *data) { const int N = data->size(); const double R = 0.1; // radius of cluster int i = 0; const int num_classes = 8; const std::array, num_classes> centres = { // centres of each class cluster std::array({.5, .5, .5}), // centre of class 0 std::array({.5, .5, -.5}), // centre of class 1 std::array({.5, -.5, .5}), // centre of class 2 std::array({.5, -.5, -.5}), // centre of class 3 std::array({-.5, .5, .5}), // centre of class 4 std::array({-.5, .5, -.5}), // centre of class 5 std::array({-.5, -.5, .5}), // centre of class 6 std::array({-.5, -.5, -.5}) // centre of class 7 }; #ifdef _OPENMP #pragma omp for #endif for (i = 0; i < N; i++) { int cls = std::rand() % num_classes; // select a random class for the point // create random coordinates (x,y,z) around the centre of the class data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R); data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R); data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R); /* The follosing can also be used for (int j = 0; j < 3; j++) data[0][i][j] = _random(centres[cls][j] - R, centres[cls][j] + R); */ } } /** Test that creates a random set of points distributed in six clusters in * 3D space. The following * [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created * to validate the execution: * * `test3.csv`: random test samples points with a circular pattern * * `w31.csv`: initial random map * * `w32.csv`: trained SOM map * * The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using * the following snippet * ```gnuplot * set datafile separator ',' * plot "test3.csv" title "original", \ * "w31.csv" title "w1", \ * "w32.csv" title "w2" * ``` * ![Sample execution * output](https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/kohonen/test3.svg) */ void test3() { int j = 0, N = 200; int features = 3; int num_out = 20; std::vector> X(N); std::vector> W(num_out); for (int i = 0; i < std::max(num_out, N); i++) { // loop till max(N, num_out) if (i < N) { // only add new arrays if i < N X[i] = std::valarray(features); } if (i < num_out) { // only add new arrays if i < num_out W[i] = std::valarray(features); #ifdef _OPENMP #pragma omp for #endif for (j = 0; j < features; j++) { // preallocate with random initial weights W[i][j] = _random(-1, 1); } } } test_3d_classes(&X); // create test data around the lamniscate save_nd_data("test3.csv", X); // save test data points save_nd_data("w31.csv", W); // save initial random weights kohonen_som_tracer(X, &W, 0.01); // train the SOM save_nd_data("w32.csv", W); // save the resultant weights } /** * Convert clock cycle difference to time in seconds * * \param[in] start_t start clock * \param[in] end_t end clock * \returns time difference in seconds */ double get_clock_diff(clock_t start_t, clock_t end_t) { return static_cast(end_t - start_t) / CLOCKS_PER_SEC; } /** Main function */ int main(int argc, char **argv) { #ifdef _OPENMP std::cout << "Using OpenMP based parallelization\n"; #else std::cout << "NOT using OpenMP based parallelization\n"; #endif std::srand(std::time(nullptr)); std::clock_t start_clk = std::clock(); test1(); auto end_clk = std::clock(); std::cout << "Test 1 completed in " << get_clock_diff(start_clk, end_clk) << " sec\n"; start_clk = std::clock(); test2(); end_clk = std::clock(); std::cout << "Test 2 completed in " << get_clock_diff(start_clk, end_clk) << " sec\n"; start_clk = std::clock(); test3(); end_clk = std::clock(); std::cout << "Test 3 completed in " << get_clock_diff(start_clk, end_clk) << " sec\n"; std::cout << "(Note: Calculated times include: creating test sets, training " "model and writing files to disk.)\n\n"; return 0; }