/** * @file * @brief Faster computation of Fibonacci series * * An efficient way to calculate nth fibonacci number faster and simpler than * \f$O(n\log n)\f$ method of matrix exponentiation This works by using both * recursion and dynamic programming. as 93rd fibonacci exceeds 19 digits, which * cannot be stored in a single long long variable, we can only use it till 92nd * fibonacci we can use it for 10000th fibonacci etc, if we implement * bigintegers. This algorithm works with the fact that nth fibonacci can easily * found if we have already found n/2th or (n+1)/2th fibonacci It is a property * of fibonacci similar to matrix exponentiation. * * \author [Krishna Vedala](https://github.com/kvedala) * @see fibonacci_large.cpp, fibonacci.cpp, string_fibonacci.cpp */ #include #include #include /** * maximum number that can be computed - The result after 93 cannot be stored * in a `uint64_t` data type. */ #define MAX 93 /** Algorithm */ uint64_t fib(uint64_t n) { static uint64_t f1 = 1, f2 = 1; // using static keyword will retain the values of // f1 and f2 for the next function call. if (n <= 2) return f2; if (n >= 93) { std::cerr << "Cannot compute for n>93 due to limit of 64-bit integers\n"; return 0; } uint64_t temp = f2; // we do not need temp to be static f2 += f1; f1 = temp; return f2; } /** Main function */ int main() { // Main Function for (uint64_t i = 1; i < 93; i++) { std::cout << i << " th fibonacci number is " << fib(i) << std::endl; } return 0; }