/** * @file * @brief Implements [Rat in a * Maze](https://www.codesdope.com/blog/article/backtracking-to- * solve-a-rat-in-a-maze-c-java-pytho/) algorithm * * @details * A Maze is given as N*N binary matrix of blocks where source block is the * upper left most block i.e., maze[0][0] and destination block is lower * rightmost block i.e., maze[N-1][N-1]. A rat starts from source and has to * reach destination. The rat can move only in two directions: forward and down. * In the maze matrix, 0 means the block is dead end and 1 means the block can * be used in the path from source to destination. * * @author [Vaibhav Thakkar](https://github.com/vaithak) * @author [David Leal](https://github.com/Panquesito7) */ #include #include #include /** * @namespace backtracking * @brief Backtracking algorithms */ namespace backtracking { /** * @namespace rat_maze * @brief Functions for [Rat in a * Maze](https://www.codesdope.com/blog/article/backtracking-to- * solve-a-rat-in-a-maze-c-java-pytho/) algorithm */ namespace rat_maze { /** * @brief Solve rat maze problem * @tparam size number of matrix size * @param currposrow current position in rows * @param currposcol current position in columns * @param maze matrix where numbers are saved * @param soln matrix to problem solution * @returns 0 on end */ template bool solveMaze(int currposrow, int currposcol, const std::array, size> &maze, std::array, size> soln) { if ((currposrow == size - 1) && (currposcol == size - 1)) { soln[currposrow][currposcol] = 1; for (int i = 0; i < size; ++i) { for (int j = 0; j < size; ++j) { std::cout << soln[i][j] << " "; } std::cout << std::endl; } return true; } else { soln[currposrow][currposcol] = 1; // if there exist a solution by moving one step ahead in a column if ((currposcol < size - 1) && maze[currposrow][currposcol + 1] == 1 && solveMaze(currposrow, currposcol + 1, maze, soln)) { return true; } // if there exists a solution by moving one step ahead in a row if ((currposrow < size - 1) && maze[currposrow + 1][currposcol] == 1 && solveMaze(currposrow + 1, currposcol, maze, soln)) { return true; } // the backtracking part soln[currposrow][currposcol] = 0; return false; } } } // namespace rat_maze } // namespace backtracking /** * @brief Test implementations * @returns void */ static void test(){ const int size = 4; std::array, size> maze = { std::array{1, 0, 1, 0}, std::array{1, 0, 1, 1}, std::array{1, 0, 0, 1}, std::array{1, 1, 1, 1}}; std::array, size> soln{}; // Backtracking: setup matrix solution to zero for (int i = 0; i < size; ++i) { for (int j = 0; j < size; ++j) { soln[i][j] = 0; } } int currposrow = 0; // Current position in rows int currposcol = 0; // Current position in columns assert(backtracking::rat_maze::solveMaze(currposrow, currposcol, maze, soln) == 1); } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run the tests return 0; }