/** * @file * @brief Compute integral approximation of the function using [Riemann sum](https://en.wikipedia.org/wiki/Riemann_sum) * @details In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth-century German mathematician Bernhard Riemann. * One very common application is approximating the area of functions or lines on a graph and the length of curves and other approximations. * The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that form a region similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together. * This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution. * Because the region filled by the small shapes is usually not the same shape as the region being measured, the Riemann sum will differ from the area being measured. * This error can be reduced by dividing up the region more finely, using smaller and smaller shapes. As the shapes get smaller and smaller, the sum approaches the Riemann integral. * \author [Benjamin Walton](https://github.com/bwalton24) * \author [Shiqi Sheng](https://github.com/shiqisheng00) */ #include /// for assert #include /// for mathematical functions #include /// for passing in functions #include /// for IO operations /** * @namespace math * @brief Mathematical functions */ namespace math { /** * @brief Computes integral approximation * @param lb lower bound * @param ub upper bound * @param func function passed in * @param delta * @returns integral approximation of function from [lb, ub] */ double integral_approx(double lb, double ub, const std::function& func, double delta = .0001) { double result = 0; uint64_t numDeltas = static_cast((ub - lb) / delta); for (int i = 0; i < numDeltas; i++) { double begin = lb + i * delta; double end = lb + (i + 1) * delta; result += delta * (func(begin) + func(end)) / 2; } return result; } /** * @brief Wrapper to evaluate if the approximated * value is within `.XX%` threshold of the exact value. * @param approx aprroximate value * @param exact expected value * @param threshold values from [0, 1) */ void test_eval(double approx, double expected, double threshold) { assert(approx >= expected * (1 - threshold)); assert(approx <= expected * (1 + threshold)); } /** * @brief Self-test implementations to * test the `integral_approx` function. * * @returns `void` */ } // namespace math static void test() { double test_1 = math::integral_approx( 3.24, 7.56, [](const double x) { return log(x) + exp(x) + x; }); std::cout << "Test Case 1" << std::endl; std::cout << "function: log(x) + e^x + x" << std::endl; std::cout << "range: [3.24, 7.56]" << std::endl; std::cout << "value: " << test_1 << std::endl; math::test_eval(test_1, 1924.80384023549, .001); std::cout << "Test 1 Passed!" << std::endl; std::cout << "=====================" << std::endl; double test_2 = math::integral_approx(0.023, 3.69, [](const double x) { return x * x + cos(x) + exp(x) + log(x) * log(x); }); std::cout << "Test Case 2" << std::endl; std::cout << "function: x^2 + cos(x) + e^x + log^2(x)" << std::endl; std::cout << "range: [.023, 3.69]" << std::endl; std::cout << "value: " << test_2 << std::endl; math::test_eval(test_2, 58.71291345202729, .001); std::cout << "Test 2 Passed!" << std::endl; std::cout << "=====================" << std::endl; double test_3 = math::integral_approx( 10.78, 24.899, [](const double x) { return x * x * x - x * x + 378; }); std::cout << "Test Case 3" << std::endl; std::cout << "function: x^3 - x^2 + 378" << std::endl; std::cout << "range: [10.78, 24.899]" << std::endl; std::cout << "value: " << test_3 << std::endl; math::test_eval(test_3, 93320.65915078377, .001); std::cout << "Test 3 Passed!" << std::endl; std::cout << "=====================" << std::endl; double test_4 = math::integral_approx( .101, .505, [](const double x) { return cos(x) * tan(x) * x * x + exp(x); }, .00001); std::cout << "Test Case 4" << std::endl; std::cout << "function: cos(x)*tan(x)*x^2 + e^x" << std::endl; std::cout << "range: [.101, .505]" << std::endl; std::cout << "value: " << test_4 << std::endl; math::test_eval(test_4, 0.566485986311631, .001); std::cout << "Test 4 Passed!" << std::endl; std::cout << "=====================" << std::endl; double test_5 = math::integral_approx( -1, 1, [](const double x) { return exp(-1 / (x * x)); }); std::cout << "Test Case 5" << std::endl; std::cout << "function: e^(-1/x^2)" << std::endl; std::cout << "range: [-1, 1]" << std::endl; std::cout << "value: " << test_5 << std::endl; math::test_eval(test_5, 0.1781477117815607, .001); std::cout << "Test 5 Passed!" << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; }