/**
* @file
* @brief C++ Program to find
* [Euler's Totient](https://en.wikipedia.org/wiki/Euler%27s_totient_function)
* function
*
* Euler Totient Function is also known as phi function.
* \f[\phi(n) =
* \phi\left({p_1}^{a_1}\right)\cdot\phi\left({p_2}^{a_2}\right)\ldots\f] where
* \f$p_1\f$, \f$p_2\f$, \f$\ldots\f$ are prime factors of n.
*
3 Euler's properties:
* 1. \f$\phi(n) = n-1\f$
* 2. \f$\phi(n^k) = n^k - n^{k-1}\f$
* 3. \f$\phi(a,b) = \phi(a)\cdot\phi(b)\f$ where a and b are relative primes.
*
* Applying this 3 properties on the first equation.
* \f[\phi(n) =
* n\cdot\left(1-\frac{1}{p_1}\right)\cdot\left(1-\frac{1}{p_2}\right)\cdots\f]
* where \f$p_1\f$,\f$p_2\f$... are prime factors.
* Hence Implementation in \f$O\left(\sqrt{n}\right)\f$.
*
Some known values are:
* * \f$\phi(100) = 40\f$
* * \f$\phi(1) = 1\f$
* * \f$\phi(17501) = 15120\f$
* * \f$\phi(1420) = 560\f$
*/
#include
#include
/** Function to caculate Euler's totient phi
*/
uint64_t phiFunction(uint64_t n) {
uint64_t result = n;
for (uint64_t i = 2; i * i <= n; i++) {
if (n % i == 0) {
while (n % i == 0) {
n /= i;
}
result -= result / i;
}
}
if (n > 1)
result -= result / n;
return result;
}
/// Main function
int main(int argc, char *argv[]) {
uint64_t n;
if (argc < 2) {
std::cout << "Enter the number: ";
} else {
n = strtoull(argv[1], nullptr, 10);
}
std::cin >> n;
std::cout << phiFunction(n);
return 0;
}