/** * @file * @brief [A fast Fourier transform * (FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f) is an algorithm that computes the * discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this algorithm * has application in use case scenario where a user wants to find points of a function * in short period time by just using the coefficents of the polynomial function. * It can be also used to find inverse fourier transform by just switching the value of omega. * @time complexity * this algorithm computes the DFT in O(nlogn) time in comparison to traditional O(n^2). * @details * https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to -solve-polynomial-multiplication-8018d511162f * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) */ #include /// for assert #include /// for mathematical-related functions #include /// for storing points and coefficents #include /// for IO operations #include /// for storing test cases /** * @namespace numerical_methods * @brief Numerical algorithms/methods */ namespace numerical_methods { /** * @brief FastFourierTransform is a recursive function which returns list of * complex numbers * @param p List of Coefficents in form of complex numbers * @param n Count of elements in list p * @returns p if n==1 * @returns y if n!=1 */ std::complex *FastFourierTransform(std::complex *p, uint64_t n) { double pi = 2 * asin(1.0); /// Declaring value of pi if (n == 1) { return p; /// Base Case To return } std::complex om = std::complex( cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega auto *pe = new std::complex[n / 2]; /// Coefficents of even power auto *po = new std::complex[n / 2]; /// Coefficents of odd power uint64_t k1 = 0, k2 = 0; for (uint64_t j = 0; j < n; j++) { if (j % 2 == 0) { pe[k1++] = p[j]; /// Assigning values of even coefficents } else po[k2++] = p[j]; /// Assigning value of odd coefficents } std::complex *ye = FastFourierTransform(pe, n / 2); /// Recursive Call std::complex *yo = FastFourierTransform(po, n / 2); /// Recursive Call auto *y = new std::complex[n]; /// Final value representation list for (uint64_t i = 0; i < n / 2; i++) { y[i] = ye[i] + pow(om, i) * yo[i]; /// Updating the first n/2 elements y[i + n / 2] = ye[i] - pow(om, i) * yo[i]; /// Updating the last n/2 elements } delete[] ye; /// Deleting dynamic array ye delete[] yo; /// Deleting dynamic array yo delete[] pe; /// Deleting dynamic array pe delete[] po; /// Deleting dynamic array po return y; /// Returns the list } } // namespace numerical_methods /** * @brief Self-test implementations * declaring two test cases and checking for the error * in predicted and true value is less than 0.000000000001. * @returns void */ static void test() { /* descriptions of the following test */ auto *t1 = new std::complex[2]; /// Test case 1 t1[0] = {1, 0}; t1[1] = {2, 0}; auto *t2 = new std::complex[4]; /// Test case 2 t2[0] = {1, 0}; t2[1] = {2, 0}; t2[2] = {3, 0}; t2[3] = {4, 0}; uint8_t n1 = sizeof(t1) / sizeof(std::complex); uint8_t n2 = sizeof(t2) / sizeof(std::complex); std::vector> r1 = { {3, 0}, {-1, 0}}; /// True Answer for test case 1 std::vector> r2 = { {10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2 std::complex *o1 = FastFourierTransform(t1, n1); std::complex *o2 = FastFourierTransform(t2, n2); for (uint8_t i = 0; i < n1; i++) { assert((r1[i].real() - o1->real() < 0.000000000001) && (r1[i].imag() - o1->imag() < 0.000000000001)); /// Comparing for both real and imaginary /// values for test case 1 o1++; } for (uint8_t i = 0; i < n2; i++) { assert((r2[i].real() - o2->real() < 0.000000000001) && (r2[i].imag() - o2->imag() < 0.000000000001)); /// Comparing for both real and imaginary /// values for test case 2 o2++; } delete[] o1; /// Deleting dynamic array o1 delete[] o2; /// Deleting dynamic array o2 delete[] t1; /// Deleting dynamic array t1 delete[] t2; /// Deleting dynamic array t2 } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * calls automated test function to test the working of fast fourier transform. * @returns 0 on exit */ int main(int argc, char const *argv[]) { test(); // run self-test implementations return 0; }