/** * @file * @brief [A fast Fourier transform * (FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f) is an algorithm that computes the * discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this algorithm * has application in use case scenario where a user wants to find points of a function * in short period time by just using the coefficents of the polynomial function. * It can be also used to find inverse fourier transform by just switching the value of omega. * @time complexity * this algorithm computes the DFT in O(nlogn) time in comparison to traditional O(n^2). * @details * https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to -solve-polynomial-multiplication-8018d511162f * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) */ #include /// for assert #include /// for mathematical-related functions #include /// for storing points and coefficents #include /// for IO operations #include /// for storing test cases /** * @namespace numerical_methods * @brief Numerical algorithms/methods */ namespace numerical_methods { /** * @brief FastFourierTransform is a recursive function which returns list of * complex numbers * @param p List of Coefficents in form of complex numbers * @param n Count of elements in list p * @returns p if n==1 * @returns y if n!=1 */ std::complex* FastFourierTransform(std::complex*p,uint64_t n) { if(n==1){ return p; ///Base Case To return } double pi = 2 * asin(1.0); /// Declaring value of pi auto om=std::complex(cos(2*pi/n),sin(2*pi/n)); ///Calculating value of omega auto *pe= new std::complex[n/2]; /// Coefficents of even power auto *po= new std::complex[n/2]; ///Coeeficents of odd power int k1=0,k2=0; for(int j=0;j[n]; /// Final value representation list k1=0,k2=0; for(int i=0;i t1[2]={1,2}; /// Test case 1 std::complex t2[4]={1,2,3,4}; /// Test case 2 uint8_t n1 = 2; uint8_t n2 = 4; std::vector> r1 = { {3, 0}, {-1, 0}}; /// True Answer for test case 1 std::vector> r2 = { {10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2 auto *o1 = numerical_methods::FastFourierTransform(t1, n1); auto *o2 = numerical_methods::FastFourierTransform(t2, n2); for (uint8_t i = 0; i < n1; i++) { assert((r1[i].real() - o1->real() < 0.000000000001) && (r1[i].imag() - o1->imag() < 0.000000000001)); /// Comparing for both real and imaginary /// values for test case 1 o1++; } for (uint8_t i = 0; i < n2; i++) { assert((r2[i].real() - o2->real() < 0.000000000001) && (r2[i].imag() - o2->imag() < 0.000000000001)); /// Comparing for both real and imaginary /// values for test case 2 o2++; } } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * calls automated test function to test the working of fast fourier transform. * @returns 0 on exit */ int main(int argc, char const *argv[]) { test();/// run self-test implementations return 0; }