/****************************************************************************** * @file * @brief [Interpolation search * algorithm](https://en.wikipedia.org/wiki/interpolation_search) * * @details * interpolation search resembles the method by which people search a telephone * directory for a name (the key value by which the book's entries are ordered): * in each step the algorithm calculates where in the remaining search space * the sought item might be, based on the key values at the bounds of the search * space and the value of the sought key, usually via a linear interpolation. * The key value actually found at this estimated position is then compared to * the key value being sought. If it is not equal, then depending on the * comparison, the remaining search space is reduced to the part before or * after the estimated position. This method will only work if calculations * on the size of differences between key values are sensible. * ### Complexities * * //n is the number of element in the array. * * Worst-case time complexity O(n) (when items are distributed exponentially) * Average time complexity O(log2(log2 n)) * space complexity 0(1) * * @author [Lajat Manekar](https://github.com/Lazeeez) * @author Unknown author *******************************************************************************/ #include /// for std::sort function #include /// for std::assert #include /// for IO operations #include /// for std::vector /****************************************************************************** * @namespace search * @brief Searching algorithms *******************************************************************************/ namespace search { /****************************************************************************** * @namespace interpolation_search * @brief Functions for the [Interpolation *Search](https://en.wikipedia.org/wiki/interpolation_search) algorithm *implementation *******************************************************************************/ namespace interpolation_search { /****************************************************************************** * @brief The main function which implements interpolation search * @param arr vector to be searched in * @param number value to be searched * @returns integer index of `number` in vector `arr` *******************************************************************************/ uint64_t interpolationSearch(const std::vector &arr, uint64_t number) { uint64_t size = arr.size(); uint64_t low = 0, high = (size - 1); // Since vector is sorted, an element present in array must be in range // defined by corner while (low <= high && number >= arr[low] && number <= arr[high]) { if (low == high) { if (arr[low] == number) { return low; } return -1; } // Probing the position with keeping uniform distribution in mind. uint64_t pos = low + ((static_cast(high - low) / (arr[high] - arr[low])) * (number - arr[low])); if (arr[pos] == number) { return pos; // Condition of target found } if (arr[pos] < number) { low = pos + 1; // If x is larger, x is in upper part } else { high = pos - 1; // If x is smaller, x is in the lower part } } return -1; } } // namespace interpolation_search } // namespace search /******************************************************************************* * @brief Self-test implementation * @returns void *******************************************************************************/ static void tests() { // testcase // array = [10, 12, 13, 16, 18, 19, 20, 21, 1, 2, 3, 4, 22, 23, 24, 33, 35, // 42, 47] , Value = 33 should return 15 std::vector arr = {{10, 12, 13, 16, 18, 19, 20, 21, 1, 2, 3, 4, 22, 23, 24, 33, 35, 42, 47}}; sort(arr.begin(), arr.end()); uint64_t number = 33; // Element to be searched uint64_t expected_answer = 15; uint64_t derived_answer = search::interpolation_search::interpolationSearch(arr, number); std::cout << "Testcase: "; assert(derived_answer == expected_answer); std::cout << "Passed!\n"; } /******************************************************************************* * @brief Main function * @returns 0 on exit *******************************************************************************/ int main() { tests(); // run self-test implementations return 0; }