#include // Finding coefficients of a and b ie x and y in gcd(a, b) = a * x + b * y // d is gcd(a, b) // This is also used in finding Modular multiplicative inverse of a number. // (A * B)%M == 1 Here B is the MMI of A for given M, // so extendedEuclid (A, M) gives B. template void extendedEuclid(T A, T B, T *GCD, T2 *x, T2 *y) { if (B > A) std::swap(A, B); // Ensure that A >= B if (B == 0) { *GCD = A; *x = 1; *y = 0; } else { extendedEuclid(B, A % B, GCD, x, y); T2 temp = *x; *x = *y; *y = temp - (A / B) * (*y); } } int main() { uint32_t a, b, gcd; int32_t x, y; std::cin >> a >> b; extendedEuclid(a, b, &gcd, &x, &y); std::cout << gcd << " " << x << " " << y << std::endl; return 0; }