/** * @file * @brief Implementation of [K-Nearest Neighbors algorithm] * (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm). * @author [Luiz Carlos Cosmi Filho](https://github.com/luizcarloscf) * @details K-nearest neighbors algorithm, also known as KNN or k-NN, is a * supervised learning classifier, which uses proximity to make classifications. * This implementantion uses the Euclidean Distance as distance metric to find * the K-nearest neighbors. */ #include /// for std::transform and std::sort #include /// for assert #include /// for std::pow and std::sqrt #include /// for std::cout #include /// for std::accumulate #include /// for std::unordered_map #include /// for std::vector /** * @namespace machine_learning * @brief Machine learning algorithms */ namespace machine_learning { /** * @namespace k_nearest_neighbors * @brief Functions for the [K-Nearest Neighbors algorithm] * (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) implementation */ namespace k_nearest_neighbors { /** * @brief Compute the Euclidean distance between two vectors. * * @tparam T typename of the vector * @param a first unidimentional vector * @param b second unidimentional vector * @return double scalar representing the Euclidean distance between provided * vectors */ template double euclidean_distance(const std::vector& a, const std::vector& b) { std::vector aux; std::transform(a.begin(), a.end(), b.begin(), std::back_inserter(aux), [](T x1, T x2) { return std::pow((x1 - x2), 2); }); aux.shrink_to_fit(); return std::sqrt(std::accumulate(aux.begin(), aux.end(), 0.0)); } /** * @brief K-Nearest Neighbors (Knn) class using Euclidean distance as * distance metric. */ class Knn { private: std::vector> X_{}; ///< attributes vector std::vector Y_{}; ///< labels vector public: /** * @brief Construct a new Knn object. * @details Using lazy-learning approch, just holds in memory the dataset. * @param X attributes vector * @param Y labels vector */ explicit Knn(std::vector>& X, std::vector& Y) : X_(X), Y_(Y){}; /** * Copy Constructor for class Knn. * * @param model instance of class to be copied */ Knn(const Knn& model) = default; /** * Copy assignment operator for class Knn */ Knn& operator=(const Knn& model) = default; /** * Move constructor for class Knn */ Knn(Knn&&) = default; /** * Move assignment operator for class Knn */ Knn& operator=(Knn&&) = default; /** * @brief Destroy the Knn object */ ~Knn() = default; /** * @brief Classify sample. * @param sample sample * @param k number of neighbors * @return int label of most frequent neighbors */ int predict(std::vector& sample, int k) { std::vector neighbors; std::vector> distances; for (size_t i = 0; i < this->X_.size(); ++i) { auto current = this->X_.at(i); auto label = this->Y_.at(i); auto distance = euclidean_distance(current, sample); distances.emplace_back(distance, label); } std::sort(distances.begin(), distances.end()); for (int i = 0; i < k; i++) { auto label = distances.at(i).second; neighbors.push_back(label); } std::unordered_map frequency; for (auto neighbor : neighbors) { ++frequency[neighbor]; } std::pair predicted; predicted.first = -1; predicted.second = -1; for (auto& kv : frequency) { if (kv.second > predicted.second) { predicted.second = kv.second; predicted.first = kv.first; } } return predicted.first; } }; } // namespace k_nearest_neighbors } // namespace machine_learning /** * @brief Self-test implementations * @returns void */ static void test() { std::cout << "------- Test 1 -------" << std::endl; std::vector> X1 = {{0.0, 0.0}, {0.25, 0.25}, {0.0, 0.5}, {0.5, 0.5}, {1.0, 0.5}, {1.0, 1.0}}; std::vector Y1 = {1, 1, 1, 1, 2, 2}; auto model1 = machine_learning::k_nearest_neighbors::Knn(X1, Y1); std::vector sample1 = {1.2, 1.2}; std::vector sample2 = {0.1, 0.1}; std::vector sample3 = {0.1, 0.5}; std::vector sample4 = {1.0, 0.75}; assert(model1.predict(sample1, 2) == 2); assert(model1.predict(sample2, 2) == 1); assert(model1.predict(sample3, 2) == 1); assert(model1.predict(sample4, 2) == 2); std::cout << "... Passed" << std::endl; std::cout << "------- Test 2 -------" << std::endl; std::vector> X2 = { {0.0, 0.0, 0.0}, {0.25, 0.25, 0.0}, {0.0, 0.5, 0.0}, {0.5, 0.5, 0.0}, {1.0, 0.5, 0.0}, {1.0, 1.0, 0.0}, {1.0, 1.0, 1.0}, {1.5, 1.5, 1.0}}; std::vector Y2 = {1, 1, 1, 1, 2, 2, 3, 3}; auto model2 = machine_learning::k_nearest_neighbors::Knn(X2, Y2); std::vector sample5 = {1.2, 1.2, 0.0}; std::vector sample6 = {0.1, 0.1, 0.0}; std::vector sample7 = {0.1, 0.5, 0.0}; std::vector sample8 = {1.0, 0.75, 1.0}; assert(model2.predict(sample5, 2) == 2); assert(model2.predict(sample6, 2) == 1); assert(model2.predict(sample7, 2) == 1); assert(model2.predict(sample8, 2) == 3); std::cout << "... Passed" << std::endl; std::cout << "------- Test 3 -------" << std::endl; std::vector> X3 = {{0.0}, {1.0}, {2.0}, {3.0}, {4.0}, {5.0}, {6.0}, {7.0}}; std::vector Y3 = {1, 1, 1, 1, 2, 2, 2, 2}; auto model3 = machine_learning::k_nearest_neighbors::Knn(X3, Y3); std::vector sample9 = {0.5}; std::vector sample10 = {2.9}; std::vector sample11 = {5.5}; std::vector sample12 = {7.5}; assert(model3.predict(sample9, 3) == 1); assert(model3.predict(sample10, 3) == 1); assert(model3.predict(sample11, 3) == 2); assert(model3.predict(sample12, 3) == 2); std::cout << "... Passed" << std::endl; } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * @return int 0 on exit */ int main(int argc, char* argv[]) { test(); // run self-test implementations return 0; }