/** * @file * @brief C++ Program to find * [Euler's Totient](https://en.wikipedia.org/wiki/Euler%27s_totient_function) * function * * Euler Totient Function is also known as phi function. * \f[\phi(n) = * \phi\left({p_1}^{a_1}\right)\cdot\phi\left({p_2}^{a_2}\right)\ldots\f] where * \f$p_1\f$, \f$p_2\f$, \f$\ldots\f$ are prime factors of n. *
3 Euler's properties: * 1. \f$\phi(n) = n-1\f$ * 2. \f$\phi(n^k) = n^k - n^{k-1}\f$ * 3. \f$\phi(a,b) = \phi(a)\cdot\phi(b)\f$ where a and b are relative primes. * * Applying this 3 properties on the first equation. * \f[\phi(n) = * n\cdot\left(1-\frac{1}{p_1}\right)\cdot\left(1-\frac{1}{p_2}\right)\cdots\f] * where \f$p_1\f$,\f$p_2\f$... are prime factors. * Hence Implementation in \f$O\left(\sqrt{n}\right)\f$. *
Some known values are: * * \f$\phi(100) = 40\f$ * * \f$\phi(1) = 1\f$ * * \f$\phi(17501) = 15120\f$ * * \f$\phi(1420) = 560\f$ */ #include #include /** Function to caculate Euler's totient phi */ uint64_t phiFunction(uint64_t n) { uint64_t result = n; for (uint64_t i = 2; i * i <= n; i++) { if (n % i == 0) { while (n % i == 0) { n /= i; } result -= result / i; } } if (n > 1) result -= result / n; return result; } /// Main function int main(int argc, char *argv[]) { uint64_t n; if (argc < 2) { std::cout << "Enter the number: "; } else { n = strtoull(argv[1], nullptr, 10); } std::cin >> n; std::cout << phiFunction(n); return 0; }