/** * @file * @brief Get centre and radius of the * [smallest circle](https://en.wikipedia.org/wiki/Smallest-circle_problem) * that circumscribes given set of points. * * @see [other * implementation](https://www.nayuki.io/page/smallest-enclosing-circle) */ #include #include #include /** Define a point */ struct Point { double x, /**< abscissa */ y; /**< ordinate */ /** construct a point * \param [in] a absicca (default = 0.0) * \param [in] b ordinate (default = 0.0) */ explicit Point(double a = 0.f, double b = 0.f) { x = a; y = b; } }; /** Compute the Euclidian distance between two points \f$A\equiv(x_1,y_1)\f$ and * \f$B\equiv(x_2,y_2)\f$ using the formula: * \f[d=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\f] * * \param [in] A point A * \param [in] B point B * \return ditance */ double LenghtLine(const Point &A, const Point &B) { double dx = B.x - A.x; double dy = B.y - A.y; return std::sqrt((dx * dx) + (dy * dy)); } /** * Compute the area of triangle formed by three points using [Heron's * formula](https://en.wikipedia.org/wiki/Heron%27s_formula). * If the lengths of the sides of the triangle are \f$a,\,b,\,c\f$ and * \f$s=\displaystyle\frac{a+b+c}{2}\f$ is the semi-perimeter then the area is * given by \f[A=\sqrt{s(s-a)(s-b)(s-c)}\f] * \param [in] A vertex A * \param [in] B vertex B * \param [in] C vertex C * \returns area of triangle */ double TriangleArea(const Point &A, const Point &B, const Point &C) { double a = LenghtLine(A, B); double b = LenghtLine(B, C); double c = LenghtLine(C, A); double p = (a + b + c) / 2; return std::sqrt(p * (p - a) * (p - b) * (p - c)); } /** * Check if a set of points lie within given circle. This is true if the * distance of all the points from the centre of the circle is less than the * radius of the circle * \param [in] P set of points to check * \param [in] Center coordinates to centre of the circle * \param [in] R radius of the circle * \returns True if P lies on or within the circle * \returns False if P lies outside the circle */ bool PointInCircle(const std::vector &P, const Point &Center, double R) { for (size_t i = 0; i < P.size(); i++) { if (LenghtLine(P[i], Center) > R) return false; } return true; } /** * Find the centre and radius of a circle enclosing a set of points.\n * The function returns the radius of the circle and prints the coordinated of * the centre of the circle. * \param [in] P vector of points * \returns radius of the circle */ double circle(const std::vector &P) { double minR = INFINITY; double R; Point C; Point minC; /* This code is invalid and does not give correct result for TEST 3 */ // for each point in the list for (size_t i = 0; i < P.size() - 2; i++) // for every subsequent point in the list for (size_t j = i + 1; j < P.size(); j++) // for every subsequent point in the list for (size_t k = j + 1; k < P.size(); k++) { // here, we now have picked three points from the given set of // points that we can use // viz., P[i], P[j] and P[k] C.x = -0.5 * ((P[i].y * (P[j].x * P[j].x + P[j].y * P[j].y - P[k].x * P[k].x - P[k].y * P[k].y) + P[j].y * (P[k].x * P[k].x + P[k].y * P[k].y - P[i].x * P[i].x - P[i].y * P[i].y) + P[k].y * (P[i].x * P[i].x + P[i].y * P[i].y - P[j].x * P[j].x - P[j].y * P[j].y)) / (P[i].x * (P[j].y - P[k].y) + P[j].x * (P[k].y - P[i].y) + P[k].x * (P[i].y - P[j].y))); C.y = 0.5 * ((P[i].x * (P[j].x * P[j].x + P[j].y * P[j].y - P[k].x * P[k].x - P[k].y * P[k].y) + P[j].x * (P[k].x * P[k].x + P[k].y * P[k].y - P[i].x * P[i].x - P[i].y * P[i].y) + P[k].x * (P[i].x * P[i].x + P[i].y * P[i].y - P[j].x * P[j].x - P[j].y * P[j].y)) / (P[i].x * (P[j].y - P[k].y) + P[j].x * (P[k].y - P[i].y) + P[k].x * (P[i].y - P[j].y))); R = (LenghtLine(P[i], P[j]) * LenghtLine(P[j], P[k]) * LenghtLine(P[k], P[i])) / (4 * TriangleArea(P[i], P[j], P[k])); if (!PointInCircle(P, C, R)) { continue; } if (R <= minR) { minR = R; minC = C; } } // for each point in the list for (size_t i = 0; i < P.size() - 1; i++) // for every subsequent point in the list for (size_t j = i + 1; j < P.size(); j++) { // check for diameterically opposite points C.x = (P[i].x + P[j].x) / 2; C.y = (P[i].y + P[j].y) / 2; R = LenghtLine(C, P[i]); if (!PointInCircle(P, C, R)) { continue; } if (R <= minR) { minR = R; minC = C; } } std::cout << minC.x << " " << minC.y << std::endl; return minR; } /** Test case: result should be: * \n Circle with * \n radius 3.318493136080724 * \n centre at (3.0454545454545454, 1.3181818181818181) */ void test() { std::vector Pv; Pv.push_back(Point(0, 0)); Pv.push_back(Point(5, 4)); Pv.push_back(Point(1, 3)); Pv.push_back(Point(4, 1)); Pv.push_back(Point(3, -2)); std::cout << circle(Pv) << std::endl; } /** Test case: result should be: * \n Circle with * \n radius 1.4142135623730951 * \n centre at (1.0, 1.0) */ void test2() { std::vector Pv; Pv.push_back(Point(0, 0)); Pv.push_back(Point(0, 2)); Pv.push_back(Point(2, 2)); Pv.push_back(Point(2, 0)); std::cout << circle(Pv) << std::endl; } /** Test case: result should be: * \n Circle with * \n radius 1.821078397711709 * \n centre at (2.142857142857143, 1.7857142857142856) * @todo This test fails */ void test3() { std::vector Pv; Pv.push_back(Point(0.5, 1)); Pv.push_back(Point(3.5, 3)); Pv.push_back(Point(2.5, 0)); Pv.push_back(Point(2, 1.5)); std::cout << circle(Pv) << std::endl; } /** Main program */ int main() { test(); std::cout << std::endl; test2(); std::cout << std::endl; test3(); return 0; }