/** * @file * @brief [DSU (Disjoint * sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure) * @details * It is a very powerful data structure that keeps track of different * clusters(sets) of elements, these sets are disjoint(doesnot have a common * element). Disjoint sets uses cases : for finding connected components in a * graph, used in Kruskal's algorithm for finding Minimum Spanning tree. * Operations that can be performed: * 1) UnionSet(i,j): add(element i and j to the set) * 2) findSet(i): returns the representative of the set to which i belogngs to. * 3) get_max(i),get_min(i) : returns the maximum and minimum * Below is the class-based approach which uses the heuristic of path * compression. Using path compression in findSet(i),we are able to get to the * representative of i in O(1) time. * @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT) * @see dsu_union_rank.cpp */ #include /// for assert #include /// for IO operations #include /// for std::vector using std::cout; using std::endl; using std::vector; /** * @brief Disjoint sets union data structure, class based representation. * @param n number of elements */ class dsu { private: vector p; ///< keeps track of the parent of ith element vector depth; ///< tracks the depth(rank) of i in the tree vector setSize; ///< size of each chunk(set) vector maxElement; ///< maximum of each set to which i belongs to vector minElement; ///< minimum of each set to which i belongs to public: /** * @brief contructor for initialising all data members. * @param n number of elements */ explicit dsu(uint64_t n) { p.assign(n, 0); /// initially, all of them are their own parents for (uint64_t i = 0; i < n; i++) { p[i] = i; } /// initially all have depth are equals to zero depth.assign(n, 0); maxElement.assign(n, 0); minElement.assign(n, 0); for (uint64_t i = 0; i < n; i++) { depth[i] = 0; maxElement[i] = i; minElement[i] = i; } setSize.assign(n, 0); /// initially set size will be equals to one for (uint64_t i = 0; i < n; i++) { setSize[i] = 1; } } /** * @brief Method to find the representative of the set to which i belongs * to, T(n) = O(1) * @param i element of some set * @returns representative of the set to which i belongs to. */ uint64_t findSet(uint64_t i) { /// using path compression if (p[i] == i) { return i; } return (p[i] = findSet(p[i])); } /** * @brief Method that combines two disjoint sets to which i and j belongs to * and make a single set having a common representative. * @param i element of some set * @param j element of some set * @returns void */ void UnionSet(uint64_t i, uint64_t j) { /// check if both belongs to the same set or not if (isSame(i, j)) { return; } // we find the representative of the i and j uint64_t x = findSet(i); uint64_t y = findSet(j); /// always keeping the min as x /// shallow tree if (depth[x] > depth[y]) { std::swap(x, y); } /// making the shallower root's parent the deeper root p[x] = y; /// if same depth, then increase one's depth if (depth[x] == depth[y]) { depth[y]++; } /// total size of the resultant set setSize[y] += setSize[x]; /// changing the maximum elements maxElement[y] = std::max(maxElement[x], maxElement[y]); minElement[y] = std::min(minElement[x], minElement[y]); } /** * @brief A utility function which check whether i and j belongs to * same set or not * @param i element of some set * @param j element of some set * @returns `true` if element `i` and `j` ARE in the same set * @returns `false` if element `i` and `j` are NOT in same set */ bool isSame(uint64_t i, uint64_t j) { if (findSet(i) == findSet(j)) { return true; } return false; } /** * @brief prints the minimum, maximum and size of the set to which i belongs * to * @param i element of some set * @returns void */ vector get(uint64_t i) { vector ans; ans.push_back(get_min(i)); ans.push_back(get_max(i)); ans.push_back(size(i)); return ans; } /** * @brief A utility function that returns the size of the set to which i * belongs to * @param i element of some set * @returns size of the set to which i belongs to */ uint64_t size(uint64_t i) { return setSize[findSet(i)]; } /** * @brief A utility function that returns the max element of the set to * which i belongs to * @param i element of some set * @returns maximum of the set to which i belongs to */ uint64_t get_max(uint64_t i) { return maxElement[findSet(i)]; } /** * @brief A utility function that returns the min element of the set to * which i belongs to * @param i element of some set * @returns minimum of the set to which i belongs to */ uint64_t get_min(uint64_t i) { return minElement[findSet(i)]; } }; /** * @brief Self-test implementations, 1st test * @returns void */ static void test1() { // the minimum, maximum, and size of the set uint64_t n = 10; ///< number of items dsu d(n + 1); ///< object of class disjoint sets // set 1 d.UnionSet(1, 2); // performs union operation on 1 and 2 d.UnionSet(1, 4); // performs union operation on 1 and 4 vector ans = {1, 4, 3}; for (uint64_t i = 0; i < ans.size(); i++) { assert(d.get(4).at(i) == ans[i]); // makes sure algorithm works fine } cout << "1st test passed!" << endl; } /** * @brief Self-implementations, 2nd test * @returns void */ static void test2() { // the minimum, maximum, and size of the set uint64_t n = 10; ///< number of items dsu d(n + 1); ///< object of class disjoint sets // set 1 d.UnionSet(3, 5); d.UnionSet(5, 6); d.UnionSet(5, 7); vector ans = {3, 7, 4}; for (uint64_t i = 0; i < ans.size(); i++) { assert(d.get(3).at(i) == ans[i]); // makes sure algorithm works fine } cout << "2nd test passed!" << endl; } /** * @brief Main function * @returns 0 on exit * */ int main() { uint64_t n = 10; ///< number of items dsu d(n + 1); ///< object of class disjoint sets test1(); // run 1st test case test2(); // run 2nd test case return 0; }