/** * @file * \brief Compute all possible approximate roots of any given polynomial using * [Durand Kerner * algorithm](https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method) * \author [Krishna Vedala](https://github.com/kvedala) * * Test the algorithm online: * https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7 * * Try the highly unstable Wilkinson's polynomial: * ``` * ./numerical_methods/durand_kerner_roots 1 -210 20615 -1256850 53327946 * -1672280820 40171771630 -756111184500 11310276995381 -135585182899530 * 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640 * 1206647803780373360 -3599979517947607200 8037811822645051776 * -12870931245150988800 13803759753640704000 -8752948036761600000 * 2432902008176640000 * ``` * Sample implementation results to compute approximate roots of the equation * \f$x^4-1=0\f$:\n * Error evolution during root approximations computed every
 * iteration. Roots evolution - shows the initial approximation of the
 * roots and their convergence to a final approximation along with the iterative
 * approximations */ #include #include #include #include #include #include #include #include #include #ifdef _OPENMP #include #endif #define ACCURACY 1e-10 /**< maximum accuracy limit */ /** * Evaluate the value of a polynomial with given coefficients * \param[in] coeffs coefficients of the polynomial * \param[in] x point at which to evaluate the polynomial * \returns \f$f(x)\f$ **/ std::complex poly_function(const std::valarray &coeffs, std::complex x) { double real = 0.f, imag = 0.f; int n; // #ifdef _OPENMP // #pragma omp target teams distribute reduction(+ : real, imag) // #endif for (n = 0; n < coeffs.size(); n++) { std::complex tmp = coeffs[n] * std::pow(x, coeffs.size() - n - 1); real += tmp.real(); imag += tmp.imag(); } return std::complex(real, imag); } /** * create a textual form of complex number * \param[in] x point at which to evaluate the polynomial * \returns pointer to converted string */ const char *complex_str(const std::complex &x) { #define MAX_BUFF_SIZE 50 static char msg[MAX_BUFF_SIZE]; std::snprintf(msg, MAX_BUFF_SIZE, "% 7.04g%+7.04gj", x.real(), x.imag()); return msg; } /** * check for termination condition * \param[in] delta point at which to evaluate the polynomial * \returns `false` if termination not reached * \returns `true` if termination reached */ bool check_termination(long double delta) { static long double past_delta = INFINITY; if (std::abs(past_delta - delta) <= ACCURACY || delta < ACCURACY) return true; past_delta = delta; return false; } /** * Implements Durand Kerner iterative algorithm to compute all roots of a * polynomial. * * \param[in] coeffs coefficients of the polynomial * \param[out] roots the computed roots of the polynomial * \param[in] write_log flag whether to save the log file (default = `false`) * \returns pair of values - number of iterations taken and final accuracy * achieved */ std::pair durand_kerner_algo( const std::valarray &coeffs, std::valarray> *roots, bool write_log = false) { long double tol_condition = 1; uint32_t iter = 0; int n; std::ofstream log_file; if (write_log) { /* * store intermediate values to a CSV file */ log_file.open("durand_kerner.log.csv"); if (!log_file.is_open()) { perror("Unable to create a storage log file!"); std::exit(EXIT_FAILURE); } log_file << "iter#,"; for (n = 0; n < roots->size(); n++) log_file << "root_" << n << ","; log_file << "avg. correction"; log_file << "\n0,"; for (n = 0; n < roots->size(); n++) log_file << complex_str((*roots)[n]) << ","; } bool break_loop = false; while (!check_termination(tol_condition) && iter < INT16_MAX && !break_loop) { tol_condition = 0; iter++; break_loop = false; if (log_file.is_open()) log_file << "\n" << iter << ","; #ifdef _OPENMP #pragma omp parallel for shared(break_loop, tol_condition) #endif for (n = 0; n < roots->size(); n++) { if (break_loop) continue; std::complex numerator, denominator; numerator = poly_function(coeffs, (*roots)[n]); denominator = 1.0; for (int i = 0; i < roots->size(); i++) if (i != n) denominator *= (*roots)[n] - (*roots)[i]; std::complex delta = numerator / denominator; if (std::isnan(std::abs(delta)) || std::isinf(std::abs(delta))) { std::cerr << "\n\nOverflow/underrun error - got value = " << std::abs(delta) << "\n"; // return std::pair(iter, tol_condition); break_loop = true; } (*roots)[n] -= delta; #ifdef _OPENMP #pragma omp critical #endif tol_condition = std::max(tol_condition, std::abs(std::abs(delta))); } // tol_condition /= (degree - 1); if (break_loop) break; if (log_file.is_open()) { for (n = 0; n < roots->size(); n++) log_file << complex_str((*roots)[n]) << ","; } #if defined(DEBUG) || !defined(NDEBUG) if (iter % 500 == 0) { std::cout << "Iter: " << iter << "\t"; for (n = 0; n < roots->size(); n++) std::cout << "\t" << complex_str((*roots)[n]); std::cout << "\t\tabsolute average change: " << tol_condition << "\n"; } #endif if (log_file.is_open()) log_file << tol_condition; } return std::pair(iter, tol_condition); } /** * Self test the algorithm by checking the roots for \f$x^2+4=0\f$ to which the * roots are \f$0 \pm 2i\f$ */ void test1() { const std::valarray coeffs = {1, 0, 4}; // x^2 - 2 = 0 std::valarray> roots(2); std::valarray> expected = { std::complex(0., 2.), std::complex(0., -2.) // known expected roots }; /* initialize root approximations with random values */ for (int n = 0; n < roots.size(); n++) { roots[n] = std::complex(std::rand() % 100, std::rand() % 100); roots[n] -= 50.f; roots[n] /= 25.f; } auto result = durand_kerner_algo(coeffs, &roots, false); for (int i = 0; i < roots.size(); i++) { // check if approximations are have < 0.1% error with one of the // expected roots bool err1 = false; for (int j = 0; j < roots.size(); j++) err1 |= std::abs(std::abs(roots[i] - expected[j])) < 1e-3; assert(err1); } std::cout << "Test 1 passed! - " << result.first << " iterations, " << result.second << " accuracy" << "\n"; } /** * Self test the algorithm by checking the roots for \f$0.015625x^3-1=0\f$ to * which the roots are \f$(4+0i),\,(-2\pm3.464i)\f$ */ void test2() { const std::valarray coeffs = {// 0.015625 x^3 - 1 = 0 1. / 64., 0., 0., -1.}; std::valarray> roots(3); const std::valarray> expected = { std::complex(4., 0.), std::complex(-2., 3.46410162), std::complex(-2., -3.46410162) // known expected roots }; /* initialize root approximations with random values */ for (int n = 0; n < roots.size(); n++) { roots[n] = std::complex(std::rand() % 100, std::rand() % 100); roots[n] -= 50.f; roots[n] /= 25.f; } auto result = durand_kerner_algo(coeffs, &roots, false); for (int i = 0; i < roots.size(); i++) { // check if approximations are have < 0.1% error with one of the // expected roots bool err1 = false; for (int j = 0; j < roots.size(); j++) err1 |= std::abs(std::abs(roots[i] - expected[j])) < 1e-3; assert(err1); } std::cout << "Test 2 passed! - " << result.first << " iterations, " << result.second << " accuracy" << "\n"; } /*** * Main function. * The comandline input arguments are taken as coeffiecients of a *polynomial. For example, this command * ```sh * ./durand_kerner_roots 1 0 -4 * ``` * will find roots of the polynomial \f$1\cdot x^2 + 0\cdot x^1 + (-4)=0\f$ **/ int main(int argc, char **argv) { /* initialize random seed: */ std::srand(std::time(nullptr)); if (argc < 2) { test1(); // run tests when no input is provided test2(); // and skip tests when input polynomial is provided std::cout << "Please pass the coefficients of the polynomial as " "commandline " "arguments.\n"; return 0; } int n, degree = argc - 1; // detected polynomial degree std::valarray coeffs(degree); // create coefficiencts array // number of roots = degree - 1 std::valarray> s0(degree - 1); std::cout << "Computing the roots for:\n\t"; for (n = 0; n < degree; n++) { coeffs[n] = strtod(argv[n + 1], nullptr); if (n < degree - 1 && coeffs[n] != 0) std::cout << "(" << coeffs[n] << ") x^" << degree - n - 1 << " + "; else if (coeffs[n] != 0) std::cout << "(" << coeffs[n] << ") x^" << degree - n - 1 << " = 0\n"; /* initialize root approximations with random values */ if (n < degree - 1) { s0[n] = std::complex(std::rand() % 100, std::rand() % 100); s0[n] -= 50.f; s0[n] /= 50.f; } } // numerical errors less when the first coefficient is "1" // hence, we normalize the first coefficient { double tmp = coeffs[0]; coeffs /= tmp; } clock_t end_time, start_time = clock(); auto result = durand_kerner_algo(coeffs, &s0, true); end_time = clock(); std::cout << "\nIterations: " << result.first << "\n"; for (n = 0; n < degree - 1; n++) std::cout << "\t" << complex_str(s0[n]) << "\n"; std::cout << "absolute average change: " << result.second << "\n"; std::cout << "Time taken: " << static_cast(end_time - start_time) / CLOCKS_PER_SEC << " sec\n"; return 0; }