// Longest common subsequence - Dynamic Programming #include using namespace std; void Print(int trace[20][20], int m, int n, string a) { if (m == 0 || n == 0) { return; } if (trace[m][n] == 1) { Print(trace, m - 1, n - 1, a); cout << a[m - 1]; } else if (trace[m][n] == 2) { Print(trace, m - 1, n, a); } else if (trace[m][n] == 3) { Print(trace, m, n - 1, a); } } int lcs(string a, string b) { int m = a.length(), n = b.length(); int res[m + 1][n + 1]; int trace[20][20]; // fills up the arrays with zeros. for (int i = 0; i < m + 1; i++) { for (int j = 0; j < n + 1; j++) { res[i][j] = 0; trace[i][j] = 0; } } for (int i = 0; i < m + 1; ++i) { for (int j = 0; j < n + 1; ++j) { if (i == 0 || j == 0) { res[i][j] = 0; trace[i][j] = 0; } else if (a[i - 1] == b[j - 1]) { res[i][j] = 1 + res[i - 1][j - 1]; trace[i][j] = 1; // 1 means trace the matrix in upper left // diagonal direction. } else { if (res[i - 1][j] > res[i][j - 1]) { res[i][j] = res[i - 1][j]; trace[i][j] = 2; // 2 means trace the matrix in upwards direction. } else { res[i][j] = res[i][j - 1]; trace[i][j] = 3; // means trace the matrix in left direction. } } } } Print(trace, m, n, a); return res[m][n]; } int main() { string a, b; cin >> a >> b; cout << lcs(a, b); return 0; }