/** * @file * @brief [Eight Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle) * puzzle * * @details * The **eight queens puzzle** is the problem of placing eight chess queens on * an 8×8 chessboard so that no two queens threaten each other; thus, a solution * requires that no two queens share the same row, column, or diagonal. The * eight queens puzzle is an example of the more general **n queens problem** of * placing n non-attacking queens on an n×n chessboard, for which solutions * exist for all natural numbers n with the exception of n = 2 and n = 3. * * @author Unknown author * @author [David Leal](https://github.com/Panquesito7) * */ #include #include /** * @namespace backtracking * @brief Backtracking algorithms */ namespace backtracking { /** * @namespace n_queens * @brief Functions for [Eight * Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle) puzzle. */ namespace n_queens { /** * Utility function to print matrix * @tparam n number of matrix size * @param board matrix where numbers are saved */ template void printSolution(const std::array, n> &board) { std::cout << "\n"; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { std::cout << "" << board[i][j] << " "; } std::cout << "\n"; } } /** * Check if a queen can be placed on matrix * @tparam n number of matrix size * @param board matrix where numbers are saved * @param row current index in rows * @param col current index in columns * @returns `true` if queen can be placed on matrix * @returns `false` if queen can't be placed on matrix */ template bool isSafe(const std::array, n> &board, const int &row, const int &col) { int i = 0, j = 0; // Check this row on left side for (i = 0; i < col; i++) { if (board[row][i]) { return false; } } // Check upper diagonal on left side for (i = row, j = col; i >= 0 && j >= 0; i--, j--) { if (board[i][j]) { return false; } } // Check lower diagonal on left side for (i = row, j = col; j >= 0 && i < n; i++, j--) { if (board[i][j]) { return false; } } return true; } /** * Solve n queens problem * @tparam n number of matrix size * @param board matrix where numbers are saved * @param col current index in columns */ template void solveNQ(std::array, n> board, const int &col) { if (col >= n) { printSolution(board); return; } // Consider this column and try placing // this queen in all rows one by one for (int i = 0; i < n; i++) { // Check if queen can be placed // on board[i][col] if (isSafe(board, i, col)) { // Place this queen in matrix board[i][col] = 1; // Recursive to place rest of the queens solveNQ(board, col + 1); board[i][col] = 0; // backtrack } } } } // namespace n_queens } // namespace backtracking /** * @brief Main function * @returns 0 on exit */ int main() { const int n = 4; std::array, n> board = { std::array({0, 0, 0, 0}), std::array({0, 0, 0, 0}), std::array({0, 0, 0, 0}), std::array({0, 0, 0, 0})}; backtracking::n_queens::solveNQ(board, 0); return 0; }