/** * @file * @brief An algorithm to divide two numbers under modulo p [Modular * Division](https://www.geeksforgeeks.org/modular-division) * @details To calculate division of two numbers under modulo p * Modulo operator is not distributive under division, therefore * we first have to calculate the inverse of divisor using * [Fermat's little theorem](https://en.wikipedia.org/wiki/Fermat%27s_little_theorem) * Now, we can multiply the dividend with the inverse of divisor * and modulo is distributive over multiplication operation. * Let, * We have 3 numbers a, b, p * To compute (a/b)%p * (a/b)%p ≡ (a*(inverse(b)))%p ≡ ((a%p)*inverse(b)%p)%p * NOTE: For the existence of inverse of 'b', 'b' and 'p' must be coprime * For simplicity we take p as prime * Time Complexity: O(log(b)) * Example: ( 24 / 3 ) % 5 => 8 % 5 = 3 --- (i) Now the inverse of 3 is 2 (24 * 2) % 5 = (24 % 5) * (2 % 5) = (4 * 2) % 5 = 3 --- (ii) (i) and (ii) are equal hence the answer is correct. * @see modular_inverse_fermat_little_theorem.cpp, modular_exponentiation.cpp * @author [Shubham Yadav](https://github.com/shubhamamsa) */ #include /// for assert #include /// for IO operations /** * @namespace math * @brief Mathematical algorithms */ namespace math { /** * @namespace modular_division * @brief Functions for [Modular * Division](https://www.geeksforgeeks.org/modular-division) implementation */ namespace modular_division { /** * @brief This function calculates a raised to exponent b under modulo c using * modular exponentiation. * @param a integer base * @param b unsigned integer exponent * @param c integer modulo * @return a raised to power b modulo c */ uint64_t power(uint64_t a, uint64_t b, uint64_t c) { uint64_t ans = 1; /// Initialize the answer to be returned a = a % c; /// Update a if it is more than or equal to c if (a == 0) { return 0; /// In case a is divisible by c; } while (b > 0) { /// If b is odd, multiply a with answer if (b & 1) { ans = ((ans % c) * (a % c)) % c; } /// b must be even now b = b >> 1; /// b = b/2 a = ((a % c) * (a % c)) % c; } return ans; } /** * @brief This function calculates modular division * @param a integer dividend * @param b integer divisor * @param p integer modulo * @return a/b modulo c */ uint64_t mod_division(uint64_t a, uint64_t b, uint64_t p) { uint64_t inverse = power(b, p - 2, p) % p; /// Calculate the inverse of b uint64_t result = ((a % p) * (inverse % p)) % p; /// Calculate the final result return result; } } // namespace modular_division } // namespace math /** * Function for testing power function. * test cases and assert statement. * @returns `void` */ static void test() { uint64_t test_case_1 = math::modular_division::mod_division(8, 2, 2); assert(test_case_1 == 0); std::cout << "Test 1 Passed!" << std::endl; uint64_t test_case_2 = math::modular_division::mod_division(15, 3, 7); assert(test_case_2 == 5); std::cout << "Test 2 Passed!" << std::endl; uint64_t test_case_3 = math::modular_division::mod_division(10, 5, 2); assert(test_case_3 == 0); std::cout << "Test 3 Passed!" << std::endl; uint64_t test_case_4 = math::modular_division::mod_division(81, 3, 5); assert(test_case_4 == 2); std::cout << "Test 4 Passed!" << std::endl; uint64_t test_case_5 = math::modular_division::mod_division(12848, 73, 29); assert(test_case_5 == 2); std::cout << "Test 5 Passed!" << std::endl; } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * @returns 0 on exit */ int main(int argc, char *argv[]) { test(); // execute the tests return 0; }