/**
* @file
* @brief Get list of prime numbers using Sieve of Eratosthenes
* Sieve of Eratosthenes is an algorithm to find the primes
* that is between 2 to N (as defined in main).
*
* Time Complexity : \f$O(N \cdot\log N)\f$
*
Space Complexity : \f$O(N)\f$
*
* @see primes_up_to_billion.cpp prime_numbers.cpp
*/
#include
/** Maximum number of primes */
#define MAX 10000000
/** array to store the primes */
bool isprime[MAX];
/**
* This is the function that finds the primes and eliminates
* the multiples.
*/
void sieve(uint32_t N) {
isprime[0] = false;
isprime[1] = false;
for (uint32_t i = 2; i <= N; i++) {
if (isprime[i]) {
for (uint32_t j = (i << 1); j <= N; j += i) {
isprime[j] = false;
}
}
}
}
/**
* This function prints out the primes to STDOUT
*/
void print(uint32_t N) {
for (uint32_t i = 1; i <= N; i++) {
if (isprime[i]) {
std::cout << i << ' ';
}
}
std::cout << std::endl;
}
/**
* Initialize the array
*/
void init() {
for (uint32_t i = 1; i < MAX; i++) {
isprime[i] = true;
}
}
/** main function */
int main() {
uint32_t N = 100;
init();
sieve(N);
print(N);
return 0;
}