/** * \file * \brief Solve the equation \f$f(x)=0\f$ using [Newton-Raphson * method](https://en.wikipedia.org/wiki/Newton%27s_method) for both real and * complex solutions * * The \f$(i+1)^\text{th}\f$ approximation is given by: * \f[ * x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} * \f] * * \author [Krishna Vedala](https://github.com/kvedala) * \see bisection_method.cpp, false_position.cpp */ #include #include #include #include #define EPSILON \ 1e-6 // std::numeric_limits::epsilon() ///< system accuracy limit #define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check /** define \f$f(x)\f$ to find root for */ static double eq(double i) { return (std::pow(i, 3) - (4 * i) - 9); // original equation } /** define the derivative function \f$f'(x)\f$ */ static double eq_der(double i) { return ((3 * std::pow(i, 2)) - 4); // derivative of equation } /** Main function */ int main() { std::srand(std::time(nullptr)); // initialize randomizer double z, c = std::rand() % 100, m, n; int i; std::cout << "\nInitial approximation: " << c; // start iterations for (i = 0; i < MAX_ITERATIONS; i++) { m = eq(c); n = eq_der(c); z = c - (m / n); c = z; if (std::abs(m) < EPSILON) // stoping criteria break; } std::cout << "\n\nRoot: " << z << "\t\tSteps: " << i << std::endl; return 0; }