/** * @file * @brief Program to return the [Aliquot * Sum](https://en.wikipedia.org/wiki/Aliquot_sum) of a number * * @details * The Aliquot sum \f$s(n)\f$ of a non-negative integer n is the sum of all * proper divisors of n, that is, all the divisors of n, other than itself. * * Formula: * * \f[ * s(n) = \sum_{d|n, d\neq n}d. * \f] * * For example; * \f$s(18) = 1 + 2 + 3 + 6 + 9 = 21 \f$ * * @author [SpiderMath](https://github.com/SpiderMath) */ #include /// for assert #include /// for IO operations /** * @brief Mathematical algorithms * @namespace math */ namespace math { /** * @brief to return the aliquot sum of a number * @param num The input number */ uint64_t aliquot_sum(const uint64_t num) { if (num == 0 || num == 1) { return 0; // The aliquot sum for 0 and 1 is 0 } uint64_t sum = 0; for (uint64_t i = 1; i <= num / 2; i++) { if (num % i == 0) { sum += i; } } return sum; } } // namespace math /** * @brief Self-test implementations * @returns void */ static void test() { // Aliquot sum of 10 is 1 + 2 + 5 = 8 assert(math::aliquot_sum(10) == 8); // Aliquot sum of 15 is 1 + 3 + 5 = 9 assert(math::aliquot_sum(15) == 9); // Aliquot sum of 1 is 0 assert(math::aliquot_sum(1) == 0); // Aliquot sum of 97 is 1 (the aliquot sum of a prime number is 1) assert(math::aliquot_sum(97) == 1); std::cout << "All the tests have successfully passed!\n"; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run the self-test implementations return 0; }